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1. Introduction 

This report constitutes Part III in a series of reports examining extreme rainfall events in South 

Asia, that contributes to the CARISSA (Climate Analysis for Risk Information and Services in 

South Asia) Work Package of the ARRCC (Asia Regional Resilience to a Changing Climate) 

programme workstream 4, focused on developing climate services for the water and 

hydropower sectors. 

This report focuses on the use of observational datasets for assessing extreme precipitation 

in Nepal. Further references to precipitation extremes specifically relate to high rainfall 

accumulations that occur during the Nepal monsoon season, June – September.  Within the 

context of hydropower, damage to infrastructure as a result of precipitation extremes is most 

often associated with rainfall accumulation occurring in the monsoon season. The remainder 

of Section 1 summarises the key drivers of precipitation extremes over Nepal, Section 2 

reviews a selection of common precipitation datasets and Section 3 compares of subset of 5 

datasets from Section 2 with the Met Office seasonal forecast GloSea5.  We conclude with 

some directions for future work in Section 4. 

1.1 Drivers of precipitation extremes in Nepal 

The South Asian summer monsoon is affected by the El Niño Southern Oscillation (ENSO) 

and the Indian Ocean Dipole (IOD). The El Niño phase of ENSO acts to suppress monsoon 

rainfall and the La Niña phase acts to enhance rainfall (e.g. Pant & Parthasarathy, 1981; Sikka, 

1980). For IOD, in general the positive phase correlates with increased monsoon rainfall and 

the negative phase with decreased rainfall (e.g. Ashok et al., 2001; Behera et al., 1999).  There 

is also significant intra-seasonal variability in South Asian monsoon rainfall with periods of 

active and break conditions in the monsoon rains.  A more detailed summary of extreme 

precipitation events in South Asia and their climate drivers can be found in Richardson (2021) 

and Stacey et al. (2019). 

Within Nepal, the synoptic conditions associated with heavy precipitation during the monsoon 

are low-pressure systems, mid-level troughs, western disturbances and break monsoon 

conditions (Bohlinger et al., 2017; Nandargi & Dhar, 2011). Heavy rainfall is often associated 

with northward moving low-pressure systems from the Bay of Bengal and the orographic uplift 

effect that causes precipitation upon approaching the Himalayan mountain range (Bohlinger 

et al., 2017).  A ‘break’ in the South Asia summer monsoon shifts the monsoon trough from its 

normal position over North Indian River Plain, northwards to the foot of the Himalayas (e.g. 

Ramanadham et al., 1973). The sub-tropical ridge line in the upper troposphere shifts 

northwards during break and lies approximately above the lower monsoon trough. This seems 

to provide an effective process of removing ascending air in the lower monsoon trough causing 

exceptionally heavy rainfall over Assam and along the foot of the Himalayas. Specifically 

https://www.metoffice.gov.uk/services/government/international-development/climate-analysis-for-risk-information--services-in-south-asia-carissa
https://www.metoffice.gov.uk/services/government/international-development/arrcc
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considering extreme one-day rainfall events, Nandargi & Dhar (2011) suggest that these can 

occur in both monsoon excess and deficit years, and were most often associated with South 

Asian summer monsoon break conditions.  Karki et al. (2017) show that generally, high-

intensity extremes are more intense over the southern lowlands, but during the monsoon there 

are 3 distinct high-precipitation areas in the regions of Lumle, Gumthang and Num. The 

complexity in the spatial pattern of extreme rainfall is variable between averaging periods (e.g. 

annual vs seasonal), creating highly specific regional risks of floods, landslides and droughts, 

and highlighting the importance of assessing precipitation extremes at high spatial resolution. 

 

2. Data Review 

There are many sources of precipitation data over Nepal. Ostensibly similar datasets are 

known to show marked differences (e.g. Ceglar et al., 2017; Sun et al., 2018), and their 

reliability is principally defined by the number and spatial coverage of surface stations, satellite 

algorithms, and the data assimilation models that contribute to their creation.  As summarised 

by Sun at al. (2018), rain gauges provide relatively accurate and trusted measurements of 

precipitation at single points but are unavailable over many sparsely populated and oceanic 

areas and can be affected by sampling errors. Satellite observations provide precipitation 

information with a greater degree of homogeneous spatial coverage but contain non-negligible 

random errors and biases owing to the indirect nature of the relationship between the 

observations and precipitation, inadequate temporal sampling given the rate of movement of 

some extreme rainfall systems, and deficiencies in the data processing algorithms needed to 

amalgamate their observations. In some cases, these direct observations are incorporated 

into reanalysis systems that use mathematically defined physical and dynamical processes in 

order to generate a synthesized estimate of precipitation across a uniform grid, with spatial 

homogeneity and temporal continuity.  

In the context of this report, to make the best estimate of rainfall extremes, a critical review of 

these datasets is necessary to choose a subset that work best over Nepal. Several authors 

have undertaken reviews and comparisons of precipitation datasets.  The multi-product 

gridded precipitation comparison of Dahri et al. (2021), evaluated across the western Himalaya 

and Hindu Kush regions, finds gauge‐based and satellite ‘merged’ products performed better 

in dry regions and during the monsoon season, while reanalysis products provided better 

estimates in wet areas and during winter months (although this comparison is performed 

against the authors’ own dataset, described in Dahri et al. (2018), based on gauge data). Chen 

et al. (2021) suggest that model resolution is important in representing the complex orographic 

effects on precipitation in mountainous Nepal, and the steepness of slope appears to have a 

substantial impact on moisture advection/divergence parameterization terms (Zhang & Li, 

2016) used in reanalysis datasets.  As monsoon water vapor enters Nepal from the east and 
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moves west, we expect higher-resolution datasets to be a better representation of the truea 

precipitation in eastern Nepal because their model terrain accurately reflects the blocking 

effects of the high mountains.  By comparison, coarse resolution datasets tend to allow more 

water vapor transport into the western region as they cannot capture terrain blocking effects. 

Hamm et al. (2020) show that as higher-resolution improves the representation of extreme 

precipitation, this results in an overall lower spatial mean precipitation but higher extreme 

events. Although the comparison of observational rain gauge estimates against gridded 

precipitation estimates is non-trivial, these types of comparisons show that generally gridded 

products tend to overestimate rainfall amounts in mountainous regions (e.g. Hamm et al., 

2020; Zhang & Li, 2016), but higher resolution gridded data tend to compare more favourably. 

For these reasons, this study favours datasets with high resolution over comparable datasets 

with a lower resolution. Finally, the comparison by Nguyen et al. (2020) across Monsson Asia 

shows that there are strong sub-regional differences between datasets, that can be explained 

by the quantity and quality of rain gauges. Areas with a dense station network are typically 

found to show high consistency in spatial and temporal patterns, whilst large inter-product 

spread is found in areas with sparse station density.  Furthermore, they show that that satellite 

products can have the spatial imprints of the underlying in situ data. and cannot necessarily 

be considered a perfect replacement to the lack of in situ data over data-sparse regions. 

Generally, our stakeholder requirements reflect a need to examine precipitation extremes, with 

an initial focus on maximum 1-day precipitation (RX1day) within the Nepal monsoon season 

between June and September (JJAS).  As these extremes occur on daily time scales, monthly 

data on its own is unsuitable. It is also important to estimate return periods, as these are widely 

used within infrastructure sectors, for which robust estimation requires lengthy records. For 

maximum decision making utility, a further translation of extreme rainfall to river flow will be 

necessary which we hope to perform in collaboration with partner organisations.  

The following sections review literature associated with several common precipitation datasets 

from in situ, satellite, blended and reanalyses sources. 

 

 

 

 
a In so far as we can ever be certainly of what is ‘truth’ given the limitations in observational methods 
already discussed. 
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2.1 ERA5 and related reanalysis datasets 

Name Period 
Spatial 

Resolution 
Temporal 

Resolution 
Citation 

ERA5 1950-present  0.25°b Hourly Hersbach et al. (2018) 

ERA5-Land 1950-present 0.1°c Hourly Muñoz-Sabater (2021) 

AgERA5 1979-present 0.1° Daily  

WFDE5 v1.1 1979-2018 0.5° Hourly Lange (2019) 

 

The ERA5 reanalysis combines the European Centre for Medium-Range Weather Forecasts 

(ECMWF) Integrated Forecasting System (IFS) model with observations to provide a globally 

complete and consistent dataset. A global comparison against the Global Precipitation 

Climatology Project (GPCP) dataset (Nogueira, 2020) shows improved representation of 

convective rainfall, moisture convergence patterns and general reduction in systematic rainfall 

flux bias over South Asia, with respect to ERA-Interim, but no improvement to precipitation 

trends (for 1979-2018).  When considering extreme rainfall events over India, Bhattacharyya 

et al. (2022) suggests that ERA5 is the best performing reanalysis product (out of 4d) but it still 

shows a notable dry bias of ~70mm for RX1day extremes against India Meteorological 

Department (IMD) gauge observations over high-altitude India. 

ERA5-Land is a re-run of the land component of ERA5 (after Hersbach et al., 2018) at an 

enhanced native resolution of 9 km (vs native 31 km in ERA5). It uses ERA5 fields as 

atmospheric forcing without explicit data assimilation, but with improvements to the water and 

energy cycles model schemes at surface level (Muñoz-Sabater et al., 2021).  The land-surface 

improvements do not directly benefit precipitation: in this case ERA5-Land total precipitation 

is based on the linear interpolation of ERA5 total precipitation over a triangular mesh (Muñoz-

Sabater et al., 2021) which is unlikely to realistically deal with the directional heterogeneity of 

Nepal terrain, however, ERA5-Land improves estimates of soil moisture and river discharge 

estimations. Also note that unlike ERA5, uncertainty estimates are not (yet) available for 

ERA5-Land. 

AgERA5 tailors ERA5 towards users in the agricultural domain, and includes daily aggregates 

of agronomic relevant variables, tuned to local day definitions and adapted to the finer 

topography, land use pattern and land-sea delineation of the ECMWF High-Resolution 

Forecast (HRES) operational model. It is downscaled (interpolated) and variables (except 

those related to precipitation) are bias corrected against HRES using a multiple linear 

 
b Native resolution is 31 km, regridded to 0.25° for download purposes 
c Native resolution is 9 km, regridded to 0.1° for download purposes 
d Considering ERA5, MERRA-2 (Gelaro et al., 2017), PGF (Sheffield et al., 2006), and JRA-55 
(Kobayashi et al., 2015)  

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators?tab=overview
https://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:4855898
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
http://hydrology.princeton.edu/data.pgf.php
https://jra.kishou.go.jp/JRA-55/index_en.html
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regression approach.  Seeing as precipitation is excluded from the bias correction scheme, 

there is no apparent advantage to using AgERA5 over ERA5-Land, and in both cases the 

naïve interpolation method used to obtain higher-resolution output is unlikely to benefit 

precipitation fields in a physically meaningful way. 

WFDE5 is a bias-adjusted version of ERA5 aimed for use with impact models that provide a 

selection of near-surface meteorological variables (including rainfall flux) corrected against 

Climatic Research Unit (CRU) data and Global Precipitation Climatology Centre (GPCC) data. 

Although it provides hourly data, it is discounted due to its relatively coarse 0.5° spatial 

resolution. 

 

2.2 IMDAA (Indian Monsoon Data Assimilation and Analysis) 

reanalysis dataset 

Name Period 
Spatial 

Resolution 
Temporal 

Resolution 
Citation 

IMDAA 
v0.3 

1979-2019 0.12° Hourly Rani et al. (2021) 

The Indian Monsoon Data Assimilation and Analysis (IMDAA) project uses the Met Office 

Unified Model (UM) with data assimilation to produce a 12-km resolution gridded dataset for 

the South Asia monsoon region. It combines observations (gauge and satellite) from ECMWF 

and Met Office archives, with additional IMD observations not otherwise available in other 

datasets.  Evaluation of IMDAA against ERA5 over India (Rani et al., 2021), suggest these 

additional observations contribute a modest (possibly insignificant) improvement to the 

monsoon onset date compared to the IMD observational baseline. Comparing daily 

accumulated rainfall, IMDAA has greater monsoon season accumulation and fewer no-rain or 

light-rain days than both IMD and ERA5. Rani et al. suggest that this may be due to improved 

microphysics parametrisation in ERA5, but also note that the increased resolution of IMDAA, 

compared to ERA5, could also explain the rainfall intensity differences. However, it is not clear 

if or how Rani et al. account for these resolution differences in their analysis.  Examining the 

monsoon circulation, a key driver of monsoon intensity, Rani et al. suggest that there are 

negligible differences in the strength of the low and upper level flow between ERA5 and 

IMDAA, suggesting that the large-scale drivers are similar. On this basis, differences in in 

precipitation accumulation could be primarily due to resolution differences and the associated 

microphysics that can be resolved. 

The hilly regions of northern India may be a reasonably proxy for Nepal in the absence of any 

Nepal specific analysis. Singh et al. (2021) note an IMDAA wet bias over the foothills of the 

Himalayas compared to ERA5 and the IMD’s lower resolution global reanalysis dataset 

https://rds.ncmrwf.gov.in/home
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(NGFS, ~25 km resolution).  Comparing the highest rainfall intensities (≥ 200 mm/day), IMDAA 

compares more favourably to IMD observations and NGFS global-reanalysis than ERA5, 

which appears to underestimate the number of very intense rainfall days > 550 mm/day (see 

T. Singh et al., 2021 Fig. 4).  Further analysis specific to Nepal, and in relation to extreme 

rainfall events, is currently lacking for this dataset. 

 

2.3 APHRODITE (Asian Precipitation - Highly-Resolved Observational 

Data Integration Towards Evaluation) 

Name Period 
Spatial 

Resolution 
Temporal 

Resolution 
Citation 

APHRODITE-2 
v1901 

1998-2015e 0.25° Daily Yatagai et al. (2012) 

 

The APHRODITE-2 dataset (Yatagai et al., 2012) v1901 provides daily gridded precipitation 

at 0.25° over the monsoon Asia region. The dataset collates, quality controls and interpolates 

in-situ rain gauge data, including data from Nepal’s Department of Hydrology and Meteorology 

(DHM). Version 1901 provides data for the period 1998-2015. Earlier versions of the data 

extend back to 1951, but recent versions improve the unification of the daily accumulation 

values, described in Yatagai et al. (2020), and are not comparable.   

APHRODITE-2 includes ancillary information regarding the number of valid 0.05° cells (out of 

a possible maximum of 25) with at least one rain gauge that contributes to the value for each 

0.25° grid cell in the final interpolated data set. As APHRODITE-2 is solely based on rain 

gauge data, it is important to consider the availability of gauges, especially in areas of complex 

terrain and low gauge density, such as Nepal. Figure 1 shows the spatial and temporal 

variability in gauge data across Nepal: (a) shows that 61% of possible APHRODITE-2 grid 

cells over Nepal, do not have any gauge data within their boundary that contributes to their 

value. In these cases, their value in the final dataset is interpolated from the next nearest grid 

cells (as detailed in Yatagai et al., 2012). 

APHRODITE-2 is compared against a number of alternative datasets: earlier versions of 

APHRODITE (V1003R1) correlate highly with GPCC and GPCP rainfall (for both summer and 

winter) but with an overall dry bias (Palazzi et al., 2013). Evaluation over Central Asia (not 

including Nepal) by Lai et al. (2020) suggests that APHRODITE (V1101) generally 

underestimates extreme precipitation threshold values versus gauge data, while 

 
e Earlier versions of APHRODITE extend back to 1951, but it is not contiguous with this version due to 
differences in interpolation procedures 

http://aphrodite.st.hirosaki-u.ac.jp/index.html
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overestimating the total numbers of extreme precipitation events, particularly over the 

mountainous areas, and that these biases are more evident between May and September 

(MJJAS). Bai et al. (2018) show that over mountainous regions, gridded datasets based on 

traditional mathematical methods (e.g. Inverse Distance Weighted interpolation or Kriging) 

usually have smaller area-averaged precipitation than gridded datasets that account for 

windward, leeward and vertical (topographic) distribution of precipitation. Anecdotally, Dr 

Divas Basnyat from the Nepal Development Research Institute (NDRI) also suggests that 

APHRODITE underestimates rainfall over Nepal compared with observed (gauged) seasonal 

and annual average precipitation (not extreme rainfall) and runoff in some selected 

catchments in Nepal (personal communication, 2020).   

 
Figure 1 Diagnostic plots of data quantity in the APHRODITE-2 dataset over Nepal.  (a) shows the 

1998-2016 mean number of 0.05° grid cells, containing at least one rain gauge, that contribute to each 

0.25° grid cell.  For each 0.25° grid cell there are a total of 25 possible 0.05° grid cells that could 

contribute to its value. (b) shows how the total number of 0.05° grid cells with at least one rain gauge 

over Nepal varies between 1998 – 2016. 

 

2.4 CHIRPS (Climate Hazards Group InfraRed Precipitation with Station 

data) 

Name Period 
Spatial 

Resolution 
Temporal 

Resolution 
Citation 

CHIRPS v2 1981-present 0.25° & 0.05° Daily, Pentad Funk et al. (2014, 2015) 

 

CHIRPS v2 is a quasi-global (50°S - 50°N) gridded dataset derived from: (i) the monthly 

precipitation climatology product CHPClim (based on satellite and gauge data); (ii) quasi-

global geostationary thermal infrared satellite observations from the Climate Prediction Center 

(CPC, Janowiak et al., 2001) and the National Climatic Data Center (NCDC) GridSat-B1 

(Knapp et al., 2011); (iii) the Tropical Rainfall Measuring Mission (TRMM, Huffman et al., 

https://chc.ucsb.edu/data/chirps
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2007); (iv) atmospheric model rainfall fields from the NOAA Climate Forecast System, v2 

(CFSv2, Saha et al., 2010) and (v) in-situ precipitation observations.  CHIRPS primarily 

focuses on 5-day rainfall accumulation (pentads) for the purposes of modelling agricultural 

drought.  Shrestha et al. (2017) note that there is a ~90% reduction in the number of rain 

gauge stations used in the CHIRPS v2 blending process after 1992, for unknown reasons. 

Ceglar  et al. (2017) find CHIRPS v2 (0.25° version) shows greater seasonal variation and 

greater JJA mean precipitation (up to 420 mm / JJA wetter in some regions) than APHRODITE 

over Nepal. Over mountainous SW China, Bai et al. (2018) show CHIRPS to underestimate 

precipitation due to TRMM overestimating cloud top temperatures, and suggest that the 

blending techniques of alternative products such as CMOPRH (see Section 2.5) and MSWEP 

(see Section 2.8) should be preferred. Other studies also note that CHIRPS can struggle to 

differentiate rain vs no-rain conditions compared to APHRODITE (e.g. Tan et al., 2020). 

 

2.5 CMORPH (CPC MORPHing technique) 

Name Period 
Spatial 

Resolution 
Temporal 

Resolution 
Citation 

CMORPH v1 1998-present 
8 km 

(0.072°) 
30 minf Xie et al. (2019) 

 

The CMORPH technique (Joyce et al., 2004), another quasi-global (60°S - 60°N) dataset, 

uses precipitation estimates derived from low orbit satellite passive microwave observations.  

Low orbit satellites have a relatively narrow band of view, referred to as the cross-track swath 

width, which in this case is ~2200 km.  To propagate rainfall features between successive orbit 

periods, CMORPH uses feature information from geostationary satellite infrared (IR) data to 

interpolate the microwave-derived precipitation estimates in space and time. 

Direct comparison against gridded Nepal DHM gauge data (Krakauer et al., 2013) suggests 

CMORPH is generally drier (especially at elevations > 1000m) but with higher interannual 

variability. Seasonally, CMORPH is notably drier (on the order of 100 – 150 mm/month) during 

JJAS compared to DHM stations (but also APHRODITE and TRMM). A more limited 

comparison in the Khumb region of northeast Nepal (Yamamoto et al., 2011) agrees that 

CMORPH underestimates JJAS precipitation, and also has a tendency to overestimate 

precipitation in the pre- (April-May) and post- (October) monsoon seasons. 

 
f Daily version available at 0.25° resolution 

https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-cmorph
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2.6 IMERG (Integrated Multi-satellitE Retrievals for GPM) & related 

datasets 

Name Period 
Spatial 

Resolution 
Temporal 

Resolution 
Citation 

IMERG v06  1998-present 0.1° 30 min Huffman et al. (2020) 

AIMERGg 2000-2015 0.1° 30 min Ma et al. (2020) 

 

The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (known as 

IMERG) v06 algorithm combines information from the Global Precipitation Measurement 

(GPM) satellite constellation (2014 – present) with earlier Tropical Rainfall Measuring Mission 

(TRMM) satellite measurements (2000 – 2015) to estimate precipitation over the majority of 

the Earth's surface.  Both GPM (and formerly TRMM) satellite constellations host several types 

of passive microwave radiometers, but the IMERG products also combine input from 

geosynchronous IR and precipitation gauge analyses. 

Although IMERG captures the seasonal precipitation cycle associated with the monsoon over 

Nepal (e.g. Sharma et al., 2020), Nepal et al. (2021) show that IMERG v06 has a dry bias (~ 

−2.5 mm/day) compared with DHM station data (most notable during the monsoon season) 

and overestimates the number of consecutive wet days. Assessing R1X and R5X indices, they 

calculate correlation coefficients of 0.37 and 0.53 respectively between DHM stations and 

IMERG. Over the Tibetan Plateau, Xu et al. (2017) suggest that IMERG overestimates the 

frequency of intense rainfall events (>10 mm/day), but underestimates the amount of light rain 

events (0 –1 mm/day) compared to gauge data from the China Meteorological Administration.   

Recently, an Asia specific bias-corrected version of IMERG, AIMERG, has been released by 

Ma et al. (2020), combing IMERG with APHRODITE and the China Merged Precipitation 

Analysis (CMPA). This revised version appears to improve the capture of heavy rainfall events 

in terms of both the systematic bias and random error, although this assessment is based on 

evaluating rainfall associated with a typhoon over eastern China.  Ma et al. show that the 

calibration (bias-correction) of AIMERG generally results in it being drier than IMERG over 

most of its domain. 

 

 
g Asia only 

https://gpm.nasa.gov/data/imerg#imergoverview
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2.7 HAR (High Asia Refined analysis) 

Name Period 
Spatial 

Resolution 
Temporal 

Resolution 
Citation 

HAR v2 2000-2020 10 km (0.088°) Hourly Wang et al. (2021) 

 

HAR (Wang et al., 2021) is a regional atmospheric data set, focusing on high mountain Asia, 

generated by dynamically downscaling ERA5 using the Weather Research and Forecasting 

(WRF) model version 4.0.3 (Skamarock et al., 2019). It uses a daily re-initialization strategy, 

with a 12 hour spin-up period, and includes a snow depth correction to account for an ERA5 

cold bias in this region.  

Comparisons between water balance‐derived precipitation and corresponding satellite data 

by Li et al. (2020) suggests that HAR (v1) data in the high mountain areas perform better than 

the precipitation data sets from APHRODITE, satellite remote sensing (including TRMM, GPM 

and GPCC) and coarse‐resolution atmospheric reanalysis (including ERA5).  Maussion et al. 

(2014) suggest that qualitatively HAR (v1) realistically reproduces both the relationship 

between the standard deviation and the mean of precipitation, and the characteristics of 

precipitation events on the Tibetan Plateau. Further analysis by Pritchard et al. (2019) shows 

HAR v1 (at 10 km) to have reasonable correspondence with most in situ measurements, 

general consistency with observed runoff, and to be able to reproduce the strong vertical 

precipitation gradients of the upper Indus basin. 

HAR v2 extends the spatial domain, has longer temporal coverage and uses an updated 

version of the WRF model. Looking explicitly at indices of precipitation, Hamm et al. (2020) 

find that higher resolution  datasets show the overall highest values for very wet days (> 10 or 

20 mm precipitation accumulation), but have much lower mean values and lower maximum 

values for the count of wet-days. This implies that individual grid cells in higher resolution 

products (e.g., HAR v2) can experience more extreme precipitation events in multiple grid 

cells than coarser products. They also note that HAR v2 uses a cumulus parameterization 

scheme, which can, in rare occasions, lead to extremely high values (e.g. 500 mm in one day), 

which are not found in any of the other products. This feature isn’t observed in a test 2 km 

version of HAR, in which convective systems are explicitly resolved. Comparing the HAR v2 

with ERA5-Land (both at a similar spatial resolution) the difference between the linear 

interpolation of ERA5-Land and WRF-downscaling become clear. For example, while the grid-

cell with the maximum total precipitation (in the 5-month period May-Sep) in ERA5-Land has 

2400 mm, the maximum in HAR v2 totals 3 times as much (7865 mm).  At the time of writing 

there are no explicit comparisons of HAR v2 data over Nepal. 

https://www.klima.tu-berlin.de/index.php?show=daten_har2&lan=%27.$language.%27
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2.8 MSWEP (Multi-Source Weighted-Ensemble Precipitation) 

Name Period 
Spatial 

Resolution 
Temporal 

Resolution 
Citation 

MSWEP v2.8h 1979-present 0.1° 3-hourly Beck et al. (2019) 

 

MSWEP (Beck et al., 2019) is a global combined product, merging rain gauge estimates with 

ERA5 and IMERG (as of v2.8). The authors also implement distributional bias corrections, 

mainly to improve the precipitation frequency, a correction of systematic terrestrial 

precipitation biases using river discharge data, and apply monthly climatological corrections 

using Climatologies at high resolution for the earth's land surface areas (CHELSA) dataset (of 

Karger et al., 2017).  

Performance of MSWEP (v2.1, using ERA-Interim rather than ERA5) against India 

Meteorological Department rain gauge data (Mondal et al., 2018) compares well in the Indian 

Himalayas (annual averages) and appears to outperform CMORPH and two other satellite 

based products. A number of other studies compare MSWEP with several other common 

precipitation products (e.g. Derin et al., 2019; Ullah et al., 2019) and typically find MSWEP 

overestimates the precipitation at both low and high altitudes relative to gauge observations, 

but compares well when used to drive hydrological models, comparing hydrological output e.g. 

Chen et al. 2020). However, it is hard to judge the performance of v2.8 based on studies of 

v2.2 or earlier, due to the recent release of v2.8 which newly incorporates ERA5, and removes 

ERA-Interim. 

 

 

 

 

 

 

 

 

 
h Released February 4, 2021 – see Technical Documentation 

http://www.gloh2o.org/mswep/
https://www.dropbox.com/s/2xmdpqn5xmlp6ma/MSWEP_V2_doc.pdf?dl=1
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2.9 Seasonal Prediction Systems 

Name Period 
Ensemble 
Members 

Spatial 
Resolution 

Temporal 
Resolution 

Citation 

GloSea 5 
(GC2) 

1993-2016 
24 
24 

0.83° x 0.56° i 

0.35° x 0.23° j 
Daily 

MacLachlan et al. (2015) 
Scaife et al. (2019) 

GloSea 6 
(GC3) 

1993-
present 

28 0.83° x 0.56° Daily Davis et al. (2020) 

DePreSys 
3 (GC2) 

1960-2018 80k 0.83° x 0.56° Monthly Dunstone et al. (2016) 

SEAS5 
1981-

present 
25l 0.83° x 0.56° m Daily Johnson et al. (2019) 

 

There are several seasonal prediction systems, providing ensemble output for both forecasts 

and hindcast (re-forecast) periods of at least 24 years.  The large number of ensemble 

members means these systems can be used to explore unobserved extreme events, a 

methodology commonly referred to as the UNprecedented Simulated Extreme ENsemble 

(UNSEEN) approach, by pooling ensemble members to give a larger-than-observed sample 

of plausible years of data (e.g. Jain et al., 2020; Kelder et al., 2020; Kent et al., 2022; 

Thompson et al., 2017).   

A selection of seasonal prediction systems include:  

• GloSea5 (MacLachlan et al., 2015) is built around the Met Office HadGEM3 

atmosphere-land-ocean-sea-ice coupled climate model and incorporates the Met 

Office operational 4D-Var data assimilation scheme into the model initial atmospheric 

conditions. 

• GloSea6 (Davis et al., 2020) currently has broadly the same model configuration as 

GloSea5 but with updated model physics (using atmosphere configuration GC3), a 

more realistic treatment of land-surface initialization and will eventually have more 

ensemble members. 

• DePreSys3 operating in both ‘decadal’ and ‘interannual’ modes, is also based on Met 

Office HadGEM3-GC2. It includes a full-field data assimilation scheme that nudges the 

model towards the observed analyses in the atmosphere, ocean and sea-ice 

(Dunstone et al., 2018; Dunstone, Smith, Scaife, et al., 2016). 

 
i Also referred to as N216. Operational version, currently using GC3 configuration. 
j Also referred to a N512. Research version, not operationally available, used GC2. Only 1993-2015. 
k 40 ensemble members, initialised twice per year in May and November.  
l The hindcasts have 25 ensemble members, but the forecasts have 51 members. 
m Also referred to as spectral truncation T319  



 

 

Delivery Partners: 
 

 

 
 

Page 13 of 38 

 

• SEAS5 the ECMWF seasonal forecast, provides 25 ensemble members at a similar 

resolution to operational GloSea5 (at N216 resolution) for a 36 year re-forecast period.  

The method for generating ensemble members in SEAS5 is different to Met Office 

models (see Johnson et al., 2019 for details) and therefore it may provide useful 

additional atmospheric sampling for future refinements of our analysis. 

A more comprehensive comparison of seasonal prediction systems is available in Stacey et 

al. (2021).   

Each of the seasonal forecast models favour a time-lagged ensemble approach (e.g. Dalcher 

et al., 1988; Hoffman & Kalnay, 1983), whereby at any given point in time, each ensemble 

member has been initialised from a spread of date-times equal to or preceding the given point 

in time. GloSea5 and SEAS5 hindcast members run for c. 7 months and DePreSys3 

interannual (decadal) hindcasts run for 16 months (~5.5 years).   

The key differences between GloSea5 and DePreSys3 lies in their initialisation strategies and 

external forcing datasets. DePreSys3 uses a weakly coupled data initialisation strategy, where 

the atmosphere, ocean and sea-ice are nudged towards observed analyses in a single 

assimilation run of the model. In contrast, GloSea5 combines atmosphere, ocean and sea-ice 

initial conditions at the point of forecast initialisation.  From an atmosphere perspective, the 

initialisation data is essentially the same for the hindcasts of the two systems, as both use 

ERA-Interim reanalysis. However, DePreSys3 nudges towards the ERA fields, whilst GloSea5 

takes the instantaneous field at the hindcast initialisation time.  From an ocean perspective, 

DePreSys3 and GloSea5 have very different assimilation approaches: GloSea5 covers a 

relatively data-rich period for sub-surface ocean coverage, whereas DePreSys3 runs 

hindcasts back to 1960, where sub-surface ocean data was extremely sparse (see Dunstone, 

Smith, & Hermanson, 2016 for further details). 

The strengths of seasonal forecasts can be assessed based on the predictive capability of the 

models. In this context, GloSea5 has a good ability to predict early/normal/late south Asia 

monsoon onset (e.g. Chevuturi et al., 2019) and to represent key ENSO variability, but has 

erroneous sea-surface temperature anomalies related to the IOD, both of which are key 

drivers of Indian rainfall (e.g. Johnson et al., 2017). GloSea5 also poorly represents changes 

to the Siberian high (e.g. Lim et al., 2018; Lu et al., 2017) which has been shown to be an 

important component of South Asian summer monsoon rainfall seasonal forecasting (R. Singh 

et al., 2021), and does not properly represent the shifting of the Somali jet axis towards the 

equator during break phases of the monsoon, an important feature of the monsoon 

intraseasonal oscillation (Jayakumar et al., 2017). Stacey et al. (2021) show that GloSea5 and 

SEAS5 have a significant and positive correlation with CHIRPS, for mean-daily JJAS 

precipitation over western Nepal, and receiver operating characteristic (ROC) scores > 0.6 

(i.e. the false positive rate versus the true positive rate of the model as compared to CHIRPS 

observations) for JJAS. From the point of view of providing a realistic representation of current 
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precipitation climatology, analysis by Jain et al. (2020) shows GloSea5 model fidelity to be 

sufficiently similar to Indian precipitation, being within ±2σ of the IMD JJA-mean monsoon 

rainfall observations, albeit for an India area average.   

On decadal time scales, DePreSys3 is also shown to have modest but significant interannual 

predictive capability in the South Asia monson region (Dunstone et al., 2020), but in this case 

we prefer the higher spatial and temporal resolution of GloSea5 N512, which has over 5.5x 

the number of grid cells for a given area compared to DePreSys. 

Practically, GloSea5 N512 (0.35° x 0.23°) provides 24 years x 122 JJAS days x 24 members 

(3 initialisation dates per year x 8 realisations at each initialisation date) = 70,272 ensemble 

days, versus DePreSys3 which provides 59 years x 4 months x 40 members x 2 initialisations 

= 18,880 ensemble months. Based on the different initialisation strategies and hindcast 

periods, DePreSys3 data will probably sample a greater range of plausible rainfall situations, 

but in the context of this work, the higher resolution of GloSea5 (N512 vs N216) and daily (vs 

monthly) output is preferred over DePreSys3.  For this work, we prioritise the ease of access 

to our in-house seasonal forecast products as it appears necessary to retrieve SEAS5 data 

via MARS (rather than the C3S Climate Data Store) to obtain full resolution data for the full 

hindcast period. 

 

2.10 Data Selection 

Based on this literature review, we suggest basing our evaluation of current precipitation 

extremes on:  

(i) MSWEP v2.8, HAR v2 and IMDAA represent a range of methods used to define the 

best estimates of observed precipitation intensity, and  

(ii) GloSea5-N512 for the best estimate of unobserved precipitation variability.  

This selection is somewhat arbitrary, but aims to balance data sources and methodological 

approaches to constructing gridded data, whilst maintaining high grid resolution and trying to 

avoid multiple datasets that share common source data which would unduly bias later data 

processing efforts. Future updates could consider incorporating IMERGv06 data, and 

additional estimates of precipitation variability from either DePreSys3 or SEAS5.  

Datasets that were also considered for discussion in this Section but were dismissed include: 

GPCC-FD (Schneider et al., 2011, 2017) and GPCP v2.3 (Adler et al., 2003, 2018) due to their 

relatively coarse resolutions (≥ 0.5°); individual satellite products, such as TRMM and GPM 

products, are dismissed in favour of the combined satellite products, such as IMERG and 

CMOPRH; and the PERSIANN CCS-CDR dataset (Ashouri et al., 2015) looked promising 

https://psl.noaa.gov/data/gridded/data.gpcc.html
https://psl.noaa.gov/data/gridded/data.gpcp.html
https://doi.org/10.11572/P24W2F
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(and should be considered for future updates) but is only available as flat binary files, which 

we failed to get working with common data conversion software. We also regret that we were 

unable to obtain access to the full Nepal DHM in-situ gauge dataset. Every effort should be 

made to incorporate this into future analysis. 

Figure 2 and Figure 3 present an initial visualisation of these selected datasets.  For the 

common period 2000 – 2015 they show mean JJAS precipitation accumulation (mm) and the 

maximum 1-day (RX1day) JJAS accumulation rainfall respectively, against common baseline 

datasets APHRODITE and ERA5.  For illustrative purposes, each dataset is plotted at their 

native resolution, as is immediately available to users, although we note that for a formal 

comparison it is important to re-grid data to a common resolution in order to compare 

equivalent grid-box averages.  Nonetheless, even amongst these well respected datasets, the 

degree of variability is striking.  APHRODITE appears drier than both ERA5 and GloSea5 

(both at similar resolutions), and the patterns of rainfall intensity amongst the higher resolution 

models is notably different for both rainfall climatology and extremes.  The following section 

explores these differences further. 
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Figure 2 Comparison of mean JJAS precipitation accumulation (mm) for the common period 2000-

2015 for 6 datasets. Note the different resolutions of each dataset implies that JJAS mean accumulation 

values are based on different spatial averages. 
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Figure 3 Comparison of maximum RX1day JJAS precipitation (mm) for the common period 2000-2015 

for 6 datasets. As for Figure 2, the different resolutions of each dataset implies that RX1day values are 

based on different spatial averages. 



 

 

Delivery Partners: 
 

 

 
 

Page 18 of 38 

 

3. Comparison of Observations and GloSea5 

To formally compare the differences between precipitation estimates, each data set is first 

regridded to the coarsest common resolution, in this case GloSea5 N512 (0.35° x 0.23°).  We 

use the 2nd order conservative remapping of Jones (1999) via the Climate Data Operators 

(CDO) toolset of Schulzweida (2020) to facilitate a like-for-like comparison of grid cell 

averages. 

Our primary interest is then to assess the realism, or fidelity, of the GloSea5 simulations, so 

as to judge if GloSea5 can provide a supplementary source of unobserved precipitation data, 

in addition to the limited observational record.  This comparison takes place from two different 

points of reference, across a common period: (i) comparing dataset climatology, (ii) comparing 

extremes. In principle, to have confidence in the use of GloSea5 data over Nepal, the 

comparisons of GloSea5 climatology should be similar to other datasets.  By design, we 

expect the comparison of GloSea5 extremes to be different to observational datasets, but 

undertake a formal comparison so as to understand the magnitude and direction of the 

differences. 

Our testing focus is the climatological representation of wet days (where daily accumulation 

≥ 1 mm) as this is the primary interest of this ARRCC workstream.  By extension, we do not 

explicitly test the fidelity of dry data (where daily accumulation < 1 mm), and we do not 

necessarily expect the fidelity conclusions derived for wet data to apply to dry data. 

Where possible, the fidelity comparison is performed across the full 24 year GloSea5 N512 

period (1993-2016), but the APHRODITE and HAR datasets impose additional temporal limits.  

The comparisons for these datasets are made for the period 1998-2015 (18 years) and 2000-

2016 (17 years) respectively.  This is half of the typical 30 year period used for assessing 

climatology, but we are restricted to a single common period to facilitate a fair comparison. 

We use Generalised Additive Models (GAMs, Hastie & Tibshirani, 2017; Wood, 2017) to 

facilitate data pooling between grid cells, to enhance the signal and reduce grid cell noise in 

the spatial domain.  We make two general assumptions with respect to both the precipitation 

climatology and precipitation extremes: (1) that any long-term climate change signal is 

negligible during these periods, and (2) there is no impact of multi-decadal climate variability.  

Consequently, the GAMs only have longitude and latitude covariates. 

3.1 Comparison of Precipitation Climatology 

For precipitation climatology, we examine the spatial variability of seasonal (JJAS) 

accumulation.  We fit a Tweedie distributions to each dataset using GAMs, and compare the 

Tweedie mean parameter (Figure 4) and the effect size (Figure 5).  In both cases, we 
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primarily compared GloSea5 against each of the other datasets.  Figure 6 shows an 

example of the underlying data distributions at one grid cell, centred on Kathmandu.  

The effect size specifically compares the difference in means (μ), scaled by the control data 

standard deviation (σ).  This helps to contextualise the difference between the two data 

distributions in a more practical and holistic manner, in a way that the mean alone does not.  

In this case, we define the absolute effect sizen as follows: 

 

Effect Size = |
𝜇𝐺𝑙𝑜𝑆𝑒𝑎5 − 𝜇𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝜎𝐶𝑜𝑛𝑡𝑟𝑜𝑙
| (1) 

 

where the control data is the dataset against which GloSea5 is being compared. 

Means that are robustly different but which have comparatively large variances (and large 

overlap between their respective distributions) will intuitively appear more similar than a lone 

assessment of their means would suggest.  A large effect size implies there is a larger 

percentage of non-overlap between the two distributions, and can be interpreted in terms of 

the Common Language Effect Size (CLES) metric of McGraw & Wong (1992).  The CLES 

describes the probability that a JJAS accumulation year from GloSea5 will be higher than from 

the control dataset if both are chosen at random.  Figure 5 shows the link between effect size 

and CLES. 

GloSea5 is almost uniformly wetter (Δμ ≥ 100%) than either APHRODITE or MSWEP (Figure 

4), but the effect size is only notable (≥ 0.9, CLES=74%) over the Himalayas (Figure 5), 

predominantly in western regions.  For the IMDAA dataset, although there is a strong east-

west gradient difference, often ≥ 100%, with GloSea5 being wetter in the west (possibly due 

to resolution-dependent moisture advection mechanism described by Chen et al., 2021) then 

effect size is mostly ≤ 0.6 (CLES=66%).  Differences between GloSea5 and EAR5 or HAR are 

much lower, also with negligible effect sizes.   

We summarise that GloSea5 JJAS accumulation is not robustly different to ERA5 or HAR.  

For IMDAA, MSWEP and APHRODITE, some GloSea5 annual JJAS accumulation is robustly 

different in specific locations.  In particular, GloSea5 is expected to be wetter in ≥ 66 out of 

100 years over most of Nepal compared to the IMDAA datasets, ≥ 74 out of 100 years over 

the Himalayas compared to MSWEP, and ≥ 90 out of 100 years for APHRODITE.  For all other 

 
n In principle, the effect size can be positive or negative which indicates the direction of difference.  In 
this case, this direction of difference is already reflected by examining the different in means (Figure 
4) and looking at the absolute value simplifies the visualisation in Figure 5. 
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regions (Tarai and non-Himalyan areas) the difference in means is large, but the effect size is 

smaller (≤ 0.6) for MSWWP and APHRODITE.   

Visualisation of the data distribution for a grid cell containing Kathmandu shown in Figure 6 

helps rationalise the interplay between the difference in means and effect size.  For this 

location, although the HAR mean JJAS accumulation is significantly larger than GloSea5 

mean JJAS accumulation (Figure 4f), the spread in the GloSea5 estimate is large enough to 

fully encompass the range of HAR estimates (Figure 6, right panel), such that the effect size 

(Figure 5d) is small.  Although a fidelity test based on differences in means might fail in this 

case, incorporating the data variance via the effect size shows that this difference is not 

significant. 
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Figure 4 GloSea5 climatological mean (μ) based on a fitted Tweedie distribution (a) and the percentage 

difference between fitted mean parameters for the 5 observational datasets against GloSea5, Δμ (b – f). 

Black dots show locations where the difference between the two location parameters is not significantly 

different to zero at the 5% level, based on 10,000 simulated mean parameter estimates. GloSea5 mean 

is larger (lower) than observations for positive (negative) Δμ. A summary of grid cells with insignificant 

differences between GloSea5 and observations (b – f) is shown in (g). Larger circles show greater 

intermodal agreement, where the differences are insignificant in more of the comparisons. n is the total 

number of insignificant grid cells.  All comparisons are done at GloSea5 resolution (0.35° x 0.23°) for 

common time periods. The red circle denotes the grid cell containing Kathmandu. 
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Figure 5 Effect size as per Equation (1) comparing GloSea5 against datasets (b – f) in Figure 4.  The 

colour scale shows the calculated effect size and the corresponding Common Language Effect Size 

(CLES) as defined by McGraw & Wong (1992).  All comparisons are done at GloSea5 resolution (0.35° 

x 0.23°) for common time periods. 
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Figure 6  JJAS annual accumulation at one grid cell centred on Kathmandu (centred on 27.8N 85.3E) 

for each model in Figure 4.  The time series of JJAS accumulation (left) shows GloSea5 ensemble 

members in black, with other datasets as coloured rings.  These are aggregated (right) into violin plots 

of the overall distribution, with grey dots marking the 50th percentile, and grey lines showing the 5th and 

95th percentile extent. 

 

3.2 Comparison of Precipitation Extremes 

For comparing extremes, we use an extreme value analysis (EVA) approach (e.g. Kelder et 

al., 2020; Kent et al., 2022) based on the comparison of seasonal block-maxima. This fidelity 

comparison of extremes, makes use of the evgam package (Youngman, 2020) to fit GAMs as 

for Section 3.1. As the focus is on the monsoon season (June – September, JJAS) we examine 

the JJAS block maxima of 1-day maximum rainfall (RX1day) for the common range of years 

available from each dataset, fitting a Generalise Extreme Value (GEV) distribution. Figure 7 is 

equivalent to Figure 6, showing an example of the temporal variability of JJAS block-maxima 

from each dataset at the grid cell containing Kathmandu. 
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Figure 7 Temporal variability in JJAS maximum one-day accumulation (RX1day).  As for Figure 6, this 

plots datasets for the grid cell containing Kathmandu (centred on 27.8N 85.3E). 

 

As before, the GAM only has longitude and latitude covariates, in this case for both the location 

(μ, the centre of the GEV distribution) and scale (σ, the spread of the GEV distribution) 

parameters. Although there appears to be some debate on the variability of the shape 

parameter (ξ) in the literature (e.g. Ragulina & Reitan, 2017), due to the relatively small spatial 

extent of the Nepal domain, we keep ξ constant, so it does not vary in space. Typically we 

would expect 0 < ξ < 0.1 for precipitation extremes (e.g. Papalexiou & Koutsoyiannis, 2013). 

Brown (2018) notes that ξ is often poorly constrained, even with large datasets, and it is 

generally difficult to discern robust spatial variability. Finally, we note that although topographic 

elevation is expected to have explanatory power in terms of rainfall extremes, it has a strong 

directional bias (elevation change across Nepal is aligned NE-SW) such that we expect strong 

concurvity (i.e. the non-parametric analogue of multicollinearity) with longitude and latitude 

that could lead to an underestimation of σ. Hence, for this analysis we exclude topography 

from the GAM. 

In terms of GloSea5, ensemble members are derived from 8 ensembles started from 3 

different initialisation times. In practise we assume each ensemble member is independent of 

the others, although further detailed analysis is required to check this.  
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Differences are assessed in terms of μ, σ and the 20-year JJAS-max RX1day return period.  

The significance of differences is based on the difference of 10,000 simulated model 

parameters (μ and σ ) from the GEV fits for each dataset, and 20 year return period values 

estimated from the GEV sampling distribution (after Youngman, 2020), between GloSea5 and 

each other model.  From the 10,000 values, the 5th to 95th percentile range is calculated. 

Variability in simulated estimates reflects GEV fit uncertainty. Where the range in the 

difference between simulated parameters from the GloSea5 GEV model and the other 

datasets includes zero, we conclude that there is no significant difference at the 5% level. 

Although the shape parameter is not explicitly compared (it varies between models, but is 

constant in space), it is used when calculating the 20-year return level. 

3.2.1 GEV Location 

The fitted GEV location (μ) from GloSea5 shows opposing differences compared to the two 

baseline observational datasets APHRODITE-2 and ERA5 (Figure 8). With significant 

differences in almost all grid cells, GloSea5 (median μ = 59 mm, range [20, 121] mm across 

Nepal) typically has lower extreme RX1day rainfallo than ERA5 (Nepal median ΔμERA5 = -14 

mm, [-60, 19] mm) but larger RX1day rainfall than APHRODITE-2 (ΔμAPHRODITE-2 = 16 mm, 

[-10, 43] mm). The only spatial consensus between these two datasets, is that the annual-

maxima RX1day precipitation in the NW border region is slightly higher in GloSea5, than either 

ERA5 or APHRODITE-2.   

Comparison against other observational-based datasets is also varied. Nepal summaries 

show that GloSea5 RX1day is typically higher than MSWEP (8 mm, [-31, 38] mm) and lower 

than IMDAA (-3 mm, [-13, 39] mm) and HAR (-12 mm, [-53, 23] mm). Across all five datasets, 

consensus differences suggest GloSea5 RX1day to be higher than observations in the High 

Mountain areas of central provinces Gandaki and Bagmati (in 4 out of 5 datasets), lower in 

the lowlands of Sudurpashchim province (western Nepal, 3 of 5 datasets) and lower in the 

eastern provinces (Province 1 and 2, 3 out of 5 datasets).  Out of 213 possible grid cells, 102 

cells (48%) have at least one model with no significant difference in μ compared to GloSea5. 

3.2.2 GEV Scale 

Comparison of GloSea5 GEV scale (σ) parameters shows similar consistency in inter-model 

differences, but a larger number of grid cells at which the differences are not judged to be 

significantly different to zero.  Comparing ERA5 and APHRODITE-2, GloSea5 σ parameter 

(20 mm [6, 50] mm) is larger in almost all grid cells than APHRODITE-2 (7 mm [-9, 28] mm) 

and typically smaller than ERA5 (-4 mm [-33, 15] mm), but note that there are a greater number 

of insignificant differences with ERA5.  There is a large degree of consensus between the 

areas that have greater σ in GloSea5 than ERA5 or APHRODITE, including most of the Middle 

 
o GloSea5 location parameter is larger (lower) than observations for positive (negative) Δμ 
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Hills and Himalayas.  Both MSWEP, HAR and IMDAA reflect similar differences to those seen 

for the location parameter (Section 3.2.1), with ΔμMSWEP = 8 mm, [- 31, 38] mm, ΔμHAR = -

6 mm [-41, 15] mm and ΔμIMDAA = -3 mm [-14, 9] mm. 

Across all datasets, there is a consensus that GloSea5 is under-spread in the far west (in 3 of 

5 models), with a smaller over-spread area to the west of Kathmandu (3 of 5).  However, it’s 

notable that there are a much greater total number of insignificant grid cell differences (i.e. the 

spread in GloSea5 is not significantly different) across datasets (in 167 cells, 78%) compared 

to μ. 

3.2.3 20-year JJAS RX1day 

Differences between return estimates reflect the difference in the combined effect of μ, σ and 

ξ parameters. In this case, we focus on a 20-year return period, such that where GloSea5 is 

wetter (drier), its 20-year RX1day return level is larger (smaller). The median Nepal 20-year 

return level for GloSea5 = 138 mm [44, 310] mm, with differences between APHRODITE-2 

(55 mm, [-25, 146] mm) and MSWEP (23 mm, [-67, 130] mm) being generally drier, and ERA5 

(-19 mm, [-131, 72] mm), IMDAA (-9 mm, [-50, 67] mm) and HAR (-22 mm, [-171, 61] mm) 

being generally wetter. Comparing the spectrum of models, the GloSea5 20-year estimate is 

not significantly different to at least one dataset in 164 out of 213 possible grid cells (77%). 
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Figure 8 GloSea5 GEV location parameter (50% percentile, a) and the difference between GEV location 

parameters for the 5 observational datasets against GloSea5, Δμ (b – f). Black dots show locations 

where the difference between the two location parameters is not significantly different to zero at the 5% 

level, based on 10,000 location parameter estimates. GloSea5 location parameter is larger (lower) than 

observations for positive (negative) Δμ. A summary of grid cells with insignificant differences between 

GloSea5 and observations (b – f) is shown in (g) by coloured circles. Larger circles show greater 

intermodal agreement, where the differences are insignificant in more of the comparisons. n is the total 

number of insignificant grid cells.  All comparisons are done at GloSea5 resolution (0.35° x 0.23°) for 

common time periods. The red circle denotes the grid cell containing Kathmandu, the location for Figure 

7. 
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Figure 9 As for Figure 8, but GloSea5 GEV scale parameter (a) and the difference between GEV scales 

parameters for the 5 observational datasets against GloSea5, Δσ (b – f). Note the change in colour bar 

scales compared to Figure 8. A summary of grid cells with an insignificant difference between GloSea5 

and observations (b – f) is shown in (g) by coloured circles. Larger circles show greater intermodal 

agreement, where the differences are insignificant in more of the comparisons. 
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Figure 10 As for Figure 8, but GloSea5 1-in-20 year JJAS RX1day return level (a) and the difference 

between 1-in-20 year JJAS RX1day for the 5 observational datasets against GloSea5, Δ 20 (b – f). Note 

the change in colour bar scales compared to Figure 8. A summary of grid cells with an insignificant 

difference between GloSea5 and observations (b – f) is shown in (g) by coloured circles. Larger circles 

show greater intermodal agreement, where the differences are insignificant in more of the comparisons. 
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4. Summary 

Observational-based datasets estimating precipitation events over Nepal show a considerable 

spread. Following a review of 16 well-known datasets, we suggest that MSWEP v2.8, HAR v2 

and IMDAA represent a balance of resolving capability and methodological spread that should 

reasonably sample the true precipitation variability. For the purposes of comparison, to this 

set of 3 datasets we add ERA5 and APHRODITE-2 as well-known baselines (albeit noting the 

relative scarcity of gauges contributing to the APHRODITE-2 estimates over Nepal, as shown 

in Figure 1). Although these five datasets are deliberately chosen to represent different 

methodologies and sources of raw data, they are each versions of the same reality. For a data 

user wishing to estimate metrics relating to extreme precipitation events, this diversity in 

estimates is typically unhelpful. Unlike ensemble weather and climate data, it is substantially 

harder to judge the relative merits and/or independence of each dataset in such a way as to 

be able to draw statistically valid summary statistics or uncertainty estimates. 

In the context of comparing the performance of the Met Office seasonal forecast model 

GloSea5, against these five datasets, we find a similar level of disagreement. The process of 

‘fidelity testing’ typically compares summary statistics of the GloSea5 ensemble against an 

observational baseline. In this case, there is no obvious baseline dataset to use. In general, 

comparisons of climatological differences (JJAS total rainfall accumulation) show that 

GloSea5 is not significantly different to ERA5 or HAR (effect size ≤ 0.6).  For the other 

datasets, GloSea5 JJAS accumulation is notably larger than APHRODITE-2 and MSWEP 

over the Himalayas (effect size ≥ 0.6), and notably smaller than IMDAA over most of Nepal. 

Comparing extremes, we note that these differences in climatologies do not hold for GloSea5 

RX1day annual-maxima.  For 1-in-20 year return periods, GloSea5 generally predicts a wetter 

1-in-20 year event than APHRODITE-2 and MSWEP, but is generally drier than ERA5, HAR 

and IMDAA.  Without preferring one comparison over the others, we find the GloSea5 1-in-20 

year return estimates (at each grid cell) to be insignificantly different to the observed 1-in-20-

year return estimates for 78% of Nepal. 

Lacking a single robust data set for estimating precipitation extremes, future work within 

ARRCC will consider a Bayesian methodology for data melding. The aim will be to develop a 

framework for assessing the credibility of precipitation extremes across Nepal, accounting for 

the variation in precipitation data as observed in this report. If possible, a fully Bayesian 

approach should facilitate the incorporation of prior uncertainty for each dataset, and account 

for the natural hierarchy of data when incorporating ensemble data from GloSea5 with 

deterministic estimates from MSWEP, IMDAA and HAR data sources.  
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