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Glossary 

Acronym Meaning 
BHC Bradford Hill Criteria 
CERF Central Emergency Response Funds 
CAM Crisis Area Model; one of the Met Office’s limited area numerical weather 

prediction models, using boundary conditions from the Global Model. 
Case data Information on cholera cases  
CERF Central Emergency Response Fund (run by UN OCHA) 
COF Climate Outlook Forum  
COVID Coronavirus disease (COVID-19) 
CRM Cholera Risk Model 
DFID Department for International Development 
DRR Disaster Risk Reduction 
DREF Disaster Relief Emergency Fund  
EACH Early Action for Cholera 
ECMWF European Centre for Medium-Range Weather Forecasts 

EOC Emergency Operations Centre 

EOR Emergency Operations Room 
EMRO Eastern Mediterranean Regional Office 
Epi data Epidemiological data sets 
EWARS Early Warning, Alert and Response System 
FbA Forecast Based Action  
FBS Fractions Brier Score; a score function to quantify the accuracy of a forecast, 

corresponds to the mean square difference between forecast and satellite 
fields, used in calculation of the FSS. 

FCDO Foreign, Commonwealth & Development Office 
FSS Fractions Skill Score; a score for assessing the skill of precipitation forecasts 

by evaluating the forecast skill across different spatial scales (Roberts and 
Lean 2008). 

FSSufc Fractions Skill Score Useful Forecast Criterion; defined as being the FSS 
halfway between a random forecast and a perfect forecast, this is half the base 
rate plus 0.5, which can be approximated to 0.5 when dealing with low base 
rates. 

FTP File transfer protocol 
GFS Global Forecast System, produced by NCEP 
GGU Global Guidance Unit (Met Office) 
GM Global Model; refers to the global configuration of the Met Office’s Unified 

Model and the global land and global atmospheric science configurations. 
GPM Global Precipitation Measurement; a joint mission between NASA and JAXA 

aimed at studying precipitation around the globe using an international network 
of satellites, active 2014-present. 

GTFCC Global Task Force on Cholera Control 
IMERG Integrated Multi-satellitE Retrievals for GPM; algorithm that produces the multi-

satellite precipitation product. 
ITCZ Intertropical Convergence Zone; a band of low pressure caused by the 

convergence of the Northern hemisphere and Southern hemisphere trade 
winds, often accompanied by a band of precipitation. 

IV Intravenous  
JMA Japanese Meteorological Agency 
JOF Joint Operational Framework  
MEL Monitoring, Evaluation and Learning 
MO Met Office 
MOH Ministry of Health 
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MoWE Ministry of Water and Environment 
NASA National Aeronautics and Space Administration 
NCEP National Centers for Environmental Prediction 
NGO Non-Governmental Organisation 
NMHS National Meteorological and Hydrological Services 
NWP Numerical Weather Prediction 
OCHA (United Nations) Office for the Coordination of Humanitarian Affairs 
OCV Oral Cholera Vaccine 
Precipitation A scientific definition of all moisture that falls from the atmosphere, including 

rainfall, hail and snow. This is the field used by the forecast models analysed 
in this study. 

Rainfall Precipitation that falls as liquid to the ground and is the form of precipitation 
that is detected by satellites. 

REACH  REACH is a leading humanitarian initiative providing granular data, timely 
information and in-depth analysis from contexts of crisis, disaster and 
displacement. 

REAP Risk-informed Early Action Partnership launched at the Climate Action Summit 
in 2019  

RMSE Root-mean square error 
RRT Rapid Response Team - UNICEF’s teams of volunteers who provide hygiene 

and sanitation training. 
RSCZ Red Sea Convergence Zone; a convergence of air masses in the Red Sea 

where north-westerlies from the Mediterranean meet south-easterlies from the 
Gulf of Aden, often causing precipitation. 

SOP Standard Operating Procedure 
UF University of Florida 
UM Unified Model; the Met Office’s numerical model used for both weather and 

climate applications, the GM and CAM used in this analysis are both suites of 
the Unified Model. 

UMD University of Maryland 
UN United Nations 
UNICEF United Nations Children's Fund 
UN IOM United Nations International Organisation for Migration 
WASH Water Sanitation and Hygiene 
WHO World Health Organisation 
WMO World Meteorological Organization 
WRA Weekly Rainfall Assessment or Yemen Rainfall Assessment 
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Executive Summary 
 
Cholera is a highly contagious diarrhetic infection which is transmitted through the consumption of 
contaminated water or food.  If untreated, it can kill within a matter of hours. Regarded as a disease 
of inequality, cholera presents a major threat to lower income countries with poor quality drinking 
water and sanitation systems. Natural disasters and conflict also increase susceptibility to 
outbreaks of the disease.  
 
Before the war in Yemen, which started in 2016, the country was predisposed to cholera due to its 
high levels of poverty, frequent droughts, and poor sanitation infrastructure. On top of this, the 
widespread displacement of people, food shortages and other conflict-related impacts led to one 
of the worst cholera epidemics in modern times; between October 2016 and January 2020, over 
2.3 million cases and nearly 4,000 deaths were reported.  
 
UNICEF is one of the key actors in cholera prevention and response in Yemen and coordinate 
water, sanitation, and hygiene (WASH) interventions. These include the provision of safe drinking 
water and sending teams of volunteers into communities to run hygiene awareness campaigns.  
 
The association between environmental factors and cholera has been established (Camacho et al 
2018, Eisenburg et al, 2013, Hashizume et al, 2008) so the use of a tool was proposed to help 
prioritise cholera interventions ahead of the rainy season (which is associated with cholera 
outbreaks). Additionally, at the beginning of 2018 the Houthi run Ministry of Health proposed a 
change in the case definition of cholera which risked delaying a response to any outbreak. 
Additional sources of risk were therefore seen as essential to ensuring the response remained 
dynamic. Supported by the UK’s Foreign, Commonwealth and Development Office (FCDO), 
UNICEF began to receive weekly reports from the University of Florida’s (UF) Cholera Risk Model 
(CRM) in 2018. They also started receiving weekly rainfall forecasts from the Met Office in 2018.  
 
The CRM provides an indication of cholera risk which is valid for 4 weeks (from issue date). Based 
upon rainfall and temperature data, information on population density and movement and, (where 
available) WASH data, the model’s algorithm then calculates a risk score for cholera. This is 
presented in a series of maps along with a brief description on how to interpret the risk values.   

The Met Office provides rainfall information to users in Yemen on a weekly basis. This includes a 
7-day hindcast, a 7-day forecast, a 4-week forward outlook, and a summary highlighting high-
impact weather. It also includes maps showing the spatial distribution of rainfall and tables giving 
forecast rainfall, by category, for specific locations around the country. 

Cholera monitoring and response is coordinated in Yemen by an Emergency Operation Centre 
which prepares a table of the administrative districts most affected by cholera. The CRM risk scores 
and rainfall forecasts are considered alongside this data. The districts are then ranked into low-
high risk categories according to where there are cases already and where predictions suggest 
these will increase. The most appropriate action to take in high-risk districts is then identified, based 
on local contexts.  

A significant drop in cholera cases was observed in Yemen during 2018. For example, during one 
week in 2018, there were 2,500 cases, compared to 50,000 during the same week in 2017. The 
drop in cases was attributed anecdotally by UNICEF to the forecast based early intervention 
actions they had been taking, using the information from UF and the Met Office.  
 
The approach taken by UNICEF represents a novel way of tackling infectious diseases by bringing 
interventions forward, using predictive tools. Whilst well established in humanitarian contexts, the 
concept of ’anticipatory / early action’ is nascent in the field of cholera control.  
  
To understand whether the continued use of these tools in Yemen is appropriate, and to explore 
the scalability of the approach to other countries, the validity of the CRM and rainfall forecasts in 
Yemen was assessed.   
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To validate the CRM, its predictions in 2017, 2018 and 2019 were compared to recorded cases of 
cholera in Yemen. In the most populous governorates (comprising about 80% Yemeni population), 
the CRM’s predictions were accurate 60% of the time. Assessments of the CRM’s performance in 
other countries also supports these findings. Analysis of sensitivity, specificity, accuracy and 
precision, and negative predictive value, indicate changes in model risk scores predict change in 
number of cholera cases locally in Yemen. The CRM had the highest accuracy in 2017, followed 
by 2019 and lastly 2018. Cholera has occurred consistently in Yemen each week from 2017 to 
2019 and this suggests cholera is becoming endemic.  

 
The precipitation from the Met Office forecast models that are used in the weekly rainfall 
assessments was validated against observation data. As there was an absence of in-situ rainfall 
observations in Yemen, satellite derived rainfall observations were used to investigate model 
accuracy. The forecast rainfall was given one of five categories, from light rain to storm, each with 
a specific threshold. The analysis showed that light rain was typically forecast to be within 11km of 
the observation, whereas for heavy rain, the location accuracy was at least 160km. The accuracy 
of the Met Office Global Model is higher, or similar, to models from other National Weather Centres.  

It was found that the number of new cholera cases is weakly correlated to forecast rainfall. The 
statistical modelling suggests that targeted interventions based on the weekly rainfall assessments 
may have reduced the number of cholera cases, however more data would be needed to validate 
this.   

Based upon the validation of the CRM and rainfall forecasts in the contextual understanding of how 
these tools are used by UNICEF, the following recommendations are made:  
 
Key Recommendations on how the CRM and rainfall forecasts could continue to be used in 
Yemen and elsewhere 
 
How the CRM and rainfall forecasts can be used to inform early action: 
 

 In areas where epidemic cholera is expected, preventative measures will most likely 
already be underway in anticipation of outbreaks.  In these contexts, the CRM and rainfall 
forecasts should be used to inform planning and preparation activities and to intensify 
early control measures such as surveillance and reporting, strengthening healthcare 
systems and community engagement.   

 Specific actions that can be informed by the CRM and rainfall forecasts will vary by 
context/use case and should be identified with cholera response stakeholders and 
providers of the CRM and rainfall forecasts through a process of co-design.  

 As Yemen represents the only pilot in which the CRM and rainfall forecasts are used in an 
operational context (and a relatively extreme one), further pilots are needed to test and 
inform the development of this approach.  Sharing insight and learnings from these pilots, 
with the wider anticipatory action sphere and cholera response community, will be key in 
enabling the concept of early action in the cholera domain, (which is in its infancy), to 
develop.   Through demonstrating the value of using risk information, the pilots may also 
have potential to inform implementation of the Early Detection and Surveillance pillar of the 
Global Cholera Task Force’s Roadmap to Ending Cholera by 2030. 
 

Strengthening the CRM and rainfall forecasts: 
 

 Inclusion of the CRM in a new the newly formed WHO Infections Disease (ID) modelling 
inter-comparison pilot study would enable potential users to understand how and where it 
can add most value to their decision-making. 

 Development of communications materials that describe the evidence base and 
evolution of the CRM to potential users and provide guidance in how to understand and 
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interpret its outputs would make it easier to use. Access to the tool could be improved 
through the development of a web-based platform. 

 The ability to test water for the Vibrio Cholerae bacteria in areas where the CRM has 
predicted cholera would provide a ‘ground truthing’ of the model’s predictions and provide 
further justification for anticipatory action.  

 Enhancing understanding of the relationship between rainfall and cholera at local levels 
will help to determine where rainfall forecasts are most relevant.  

 Understanding the impacts of inter-annual events such as El Niño and other seasonal 
patterns on cholera could provide even earlier indications of cholera risk.   

 
Figure ES1 illustrates how using the CRM and rainfall forecasts could influence the epidemic curve 
of a hypothetical cholera outbreak. 

 

Figure ES1: Proposed use of the CRM and rainfall forecasts to inform cholera decision making and the 
impact this can have on the epidemic curve.   

UNICEF’s approach in Yemen represents a primary and promising example of how risk information 
can inform cholera response. This paper describes how the CRM and rainfall forecasts were used 
in Yemen and presents validation work on their performance.  It makes recommendations on how 
such tools should be used with the aim of furthering conversation on how a combination of data 
and models could be used to impact the course of an epidemic and reduce the suffering caused 
by cholera.   
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1. Background: Predicting Cholera in Advance 
 
1.1 Prologue 
 
During an infectious disease outbreak, the timing of the response is almost everything. This is true 
for prevention case detection/treatment, and for control measures. Early prevention, detection and 
treatment substantially reduces case fatality rates. With regards to control measures, to make a 
substantial difference to the course of an epidemic, the response needs to be ahead of the 
epidemic curve.  

 

                                Scenario A                                                          Scenario B 

Figure 1a: Schematic representation of the same cholera control measures implemented at the beginning 
(Scenario A) and after the peak (Scenario B) of an outbreak, and potential cases averted. [Y–axis = 
incidence of new cases, X-axis = time]. (Source UNICEF Evaluation of level 3 response to cholera epidemic 
in Yemen: A crises within a crises, 2018) 
 
After the peak of the outbreak, the effect of the response (even if well designed and implemented) 
will likely be marginal, or at least will have far less effect than if implemented earlier in the outbreak. 
The difference may be measured in days. It is important to note that during an outbreak, there is 
not only one curve, but rather many small curves in multiple locations and at different levels (at 
governorate, district, and even village level). To be most effective, the control response needs to 
get ahead of multiple epidemic curves, as shown in figure 1 c 
 

  
Figure 1b: Getting ahead of multiple epidemic curves (Source:  FDCO internal presentation, 2018)  
 
Responding quickly enough to every new outbreak in every new location is very difficult – and can 
only be achieved through agile and mobile rapid response teams with a very high level of 
organisation, using recently gathered data as a basis for targeted interventions. Preparedness is 
crucial to effective response – without having such systems, roles and capacities pre-established, 
the response is always likely to lag behind the epidemic curve. 
 
This report presents a case in which a prediction model for a highly infectious disease, cholera, is 
validated using near real time data from Yemen.  
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1.2 Cholera, its treatment and prevention 
 
Cholera is an infection of the small intestine by strains of the bacterium called Vibrio cholerae. It is 
spread mostly by unsafe water and food that has been contaminated with human faeces containing 
the bacteria. Symptoms may range from mild to severe with acute cases causing severe watery 
diarrhoea and dehydration which, if untreated, can be fatal within hours even in a previously healthy 
person.  
 
Modern sewage and water treatment systems mean that the disease has been eliminated in 
industrialised countries. However, this “ancient illness that today sickens and kills only the poorest 
and most vulnerable people” (Global Task Force on Cholera Control ((GTFCC)) remains 
widespread in parts of Africa, South East Asia, and Yemen. It has a worldwide case load of between 
1.3 to 4 million which results in 21,000-143,000 deaths. 
 
Cholera has two forms, epidemic and endemic. Areas described as having endemic cholera are 
those in which cholera cases have persisted during the last 3 to 5 years with evidence of local 
transmission, meaning human-to-human interactions dominate as a mechanism of infection. 
Cholera epidemics, meanwhile, occur in those regions where cholera is not reported and occurs 
sporadically. This is often associated with natural or anthropogenic shock events such as war, 
floods, or civil unrest. These shocks often change the way humans live (e.g. they may be forced to 
live in crowded conditions without adequate access to safe drinking water and sanitation).  
 
Whilst universal access to safe drinking water and adequate sanitation is the long-term solution to 
cholera, this tends to be linked to economic development and can still be vulnerable to 
environmental and humanitarian crises. Interventions to control and prevent cholera, once cases 
are observed, include surveillance and monitoring of cases, water chlorination, provision of oral 
vaccinations and strengthening education programs such as WASH through social mobilisation. 
The responsibility for treating, controlling, and preventing cholera at a national level lies between 
Government Health Ministries and non-governmental organisations (NGOs). These include (but 
are not limited to) UNICEF, UN IOM, Save the Children, Medair, Médecins Sans Frontiers and 
Water Aid.  
 
Mitigation efforts are generally synchronised by the GTFCC. Hosted by the World Health 
Organization (WHO), the Task Force brings together over 50 institutions (including governments, 
NGOs, academic institutions, and UN agencies) to implement a strategy for ending cholera by 
2030. The Ending Cholera—A Global Roadmap to 2030 aims to reduce cholera deaths by 90% 
over the next decade. It has three pillars: Early detection of and response to outbreaks, integrated 
prevention tactics, and coordination between countries and partners.  
 
The roadmap provides a concrete path for ending cholera as a public health threat and countries 
are encouraged to develop National Cholera Plans, whose implementation is overseen and 
supported by the Task Force.  
  
1.3 Predictive tools for cholera 
 
The GTFCC’s Roadmap recognises the need for early detection of cholera outbreaks and suggests 
this can be achieved through:  
 

“The strengthening of integrated early warning surveillance systems, including the 
confirmation of suspected cholera cases (requiring laboratory culture capacity and 
rapid diagnostic tests) at the peripheral level.” 

 
This is elaborated in national level roadmaps as “the need for surveillance systems to be 
strengthened at community and health facility levels through a reliable alert system and fully 
fledged laboratory capacity and proper sample management to detect and confirm cholera cases”. 
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Whilst such activities are essential in identifying when and where clusters of cases are occurring, 
most activities focus on treatment and containment with some focus on prevention (in response to 
an outbreak). 
 
In the context of weather forecasting and climate change adaptation, the concept of ‘early warning’ 
generally refers to the forecasting of anticipated hazards, not observations or proof that the event 
or hazard is already happening. Whilst early warnings for severe weather have been around for 
many years, considerable progress has been made more recently in linking specific humanitarian 
interventions to these forecasts. For example, providing government subsidies for cattle fodder 
ahead of a harsh winter or setting up evacuation centres before a tropical storm hits. Known as 
‘anticipatory action,’ this approach is now widely used by the International Federation of the Red 
Cross in their Forecast Based Financing initiatives, and by UN agencies such as the World Food 
Programme and Food and Agriculture Organisation. Anticipatory windows have also been included 
in funds such as the Red Cross’ Disaster Relief Emergency Fund (DREF) and the UN’s Central 
Emergency Response Fund (CERF). These enable the rapid release of financing to support actions 
to prepare for a forecasted event. 
 
Studies looking into the merits of acting in advance suggest the benefits of early action include 
enabling an earlier response and reducing time taken to respond (e.g. delivering food supplies 
before access routes are destroyed due to storms) and reduced suffering and indignity. Analysis 
also demonstrates the significant economic gains of investing in more proactive responses to crises 
(e.g. prepositioning, early procurement, evacuations before a predicted event) through comparing 
the relative cost of a late versus early humanitarian response (Cabot Venton, 2013).  
 
In the epidemiological domain, there is less familiarity with the concept of using forecasted risk of 
disease outbreak to take early action, even though there are several diseases which are associated 
with environmental factors which may offer a means for predicting risk. This is primarily because 
of a lack of disciplinary focus on the integration of weather and climate information with 
epidemiological data. This, in part, can be attributed to the absence of predictive tools for diarrheal 
disease, such as cholera. Models in this domain have tended to track transmission (defined as the 
human-to-human infection route only) and the impact of interventions, as opposed to highlighting 
when and where there will be an issue in the future. 
 
A Cholera Risk Model developed by the University of Florida (UF) seeks to address this gap 
through evaluating the environmental and social factors that are known to be associated with the 
occurrence of cholera. Data on rainfall, temperature, sanitation infrastructure and population 
movement are used to produce risk maps of where cholera will occur, up to 4 weeks in advance. 
 
A major cholera outbreak in Yemen in 2017 (which continues today) saw over half a million people 
infected. Alongside other more direct support to help address the situation, the UK’s Department 
for International Development (now ‘FCDO’, and FCDO used in the rest of the report) saw an 
opportunity to explore the application of anticipatory action for cholera with UNICEF, who are 
responsible for cholera prevention and response in the country.  
 
UNICEF teams started to receive weekly cholera risk data from the UF’s CRM and rainfall forecasts 
from the Met Office in April 2018 and used these to prioritise where their interventions were 
focused. By August 2018, epidemiological data suggested a significant drop in the cases in 2018 
compared to 2017, with services from UF and the Met Office being anecdotally linked to this. 
 
This paper presents an understanding of how UNICEF used these tools to inform their cholera 
response actions and explores the barriers and opportunities of taking anticipatory action in this 
new way. It provides an analysis of how reliable these tools were at predicting cholera and rainfall 
in Yemen from 2017-2019 and explores if the reduction in cases observed in 2018 can be attributed 
to the forecast-based interventions taken by UNICEF. Finally, it shares recommendations on how 
these tools should be used in Yemen and elsewhere and presents suggestions for how they can 
be enhanced.  
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2. Cholera Risk Model   
 
2.1 About the CRM 
 
The Cholera Risk Model (CRM) is an integrated platform that calculates the risk of the trigger 
(initiation risk of disease in population) and transmission (spread of disease in human population) 
of cholera. It has a validity period of 4 weeks from the date of issue. The CRM is based on the 
integration of data on rainfall, temperature and social determinants such as human mobility, water 
security and access to water and sanitation infrastructure. It is divided into two components: The 
Trigger Module (TM) and The Transmission Module (TrM). The CRM data sent to UNICEF in 
Yemen only included the Trigger Module (TM) of the model since the Transmission Module was 
(and is still) under development.  
 
A widespread outbreak of cholera requires the trigger and transmission mechanisms to act at 
appropriate times (sequentially for epidemic regions and simultaneously for endemic regions) to 
result in a public health emergency. The Trigger Module represents the mechanisms which 
simulate growth, multiplication, and persistence of Vibrio cholerae in the aquatic environment, 
followed by the interaction of the bacteria with the human population. The interaction of pathogenic 
bacteria usually occurs because of destruction of water and sanitation infrastructure which leads 
to contamination of drinking water. The model’s transmission mechanism represents the pathway 
by which a widespread outbreak of cholera occurs and involves a complex pathway of interaction 
of humans with contaminated water, in addition to a prevailing trigger mechanism.  
 
The CRM (trigger and transmission modules) was developed by the UF and the University of 
Maryland (UMD) and is based on previously published research work (Colwell, 1996; Huq et al., 
2005a, 2017a; Jutla et al., 2013; Jutla et al., 2015; Khan et al., 2018a; Singleton et al., 1982). 
Output from the trigger module of CRM is a risk score at a resolution of 1km x 1km, with predicted 
risk ranging from high (numerical value of 1) to low (numerical value of 0). Once the risk scores 
are generated at 1km resolution, it can be averaged over a user specified area of interest.  
 
The CRM is inherently different from traditional epidemiological models (Grad et al., 2012) where 
the output is usually presented as prevalence or incidence of cholera (Huq et al., 2017a). The 
motivation to use the score, rather than prevalence or incidence, is to be able to circumvent the 
lack of epidemiological data during public health emergencies, as is often a challenge due to lack 
of disease surveillance networks in regions with weak water and sanitation infrastructures. (Khan 
et al., 2018a). Traditional epidemiological models are variants of Susceptible-Infected-Recovered 
(SIR) architecture (Grad et al., 2012). Parameterisation of such models presents a challenging 
uncertainty on when and where cholera may occur. The CRM utilises a state-of –the-art framework 
of a geographically weighted raster overlay technique (Andersson & Mitchell, 2006), and hence is 
not bound by the uncertainty of model parameters. Details on methodology are provided in Annex 
4. A typical output of the CRM’s Trigger Module is shown in Figure 2a.  
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Figure 2a: Example of output from the CRM over Yemen for 9 April – 8 May 2019. 
 

2.2 Evolution of the CRM - what causes 
Cholera? 
 
There are two main schools of thought on how 
cholera spreads in human populations. 
 
One school suggests that cholera is triggered 
by the introduction of infection individual(s) to 
an unaffected populate (Eppinger et al., 2014; 
Freichs et al., 2012). It assumes that the 
cholera bacteria (which is carried by humans) 
finds its way into water systems, thereby 
contaminating them and resulting in an 
explosive prevalence of the disease. This 
hypothesis assumes humans are the carrier of 
the pathogenic bacteria. 
 
The second school of thought is based on the 
integration of climate and microbiology of 
regions (such as Bangladesh, India, South 
America and Africa), these studies suggest 

that cholera is initially triggered though the interaction of humans with ponds, rivers etc. which 
contain autochthonous pathogenic vibrios (Alam et al., 2006; Huq et al., 1983: Jutla et al., 2013; 
Singleton et al., 1982).  Secondary transmission routes (Jutla et al., 2015) then occur through the 
human-environment-human route, where infected individuals reintroduce the bacteria to the same 
or other water resources systems (Blokesch et al., 2012; Condeco et al., 2008) 
 
Large cholera outbreaks have been recorded to be associated with natural and anthropogenic 
disasters, notably when environmental conditions favour growth of the bacterium. The motivation 
for the CRM is derived from John Snow’s pioneering work in identification of a water well that was 
responsible for cholera outbreaks in England in the early 19th century. A weak water and sanitation 
infrastructure will often lead to an outbreak of cholera. In simple terms, the CRM is the 
mathematical representation of Snow’s empirical observations.  
 
The CRM is a culmination of several decades of work on understanding microbiology of cholera 
bacteria, hydro-climatology impacting bacteria and sociological processes. 
 
 

Figure 2b: Cholera Risk Model Trigger Mechanism 
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2.3 The environmental hypothesis of cholera   
 
Based on an analysis of cell surface antigen structures, the etiological agent, which is historically 
recognised as the cause of ongoing cholera pandemics, is known as Vibrio cholerae serotype O1 
or 0139. Horizontal transfer of the serotype coding genes (Bik et al., 1995) has led to the recent 
emergence of serotype O139 outbreaks of cholera. Reports of V. cholerae non-O1 strains are now 
known to carry multiple virulence factors, including the primary virulence factors of V. cholerae O1, 
namely cholera toxin. The toxin co-regulated pilus (Rivera et al., 1995) need to be considered in 
the context of public health (Hasan et al., 2013). Various Vibrio cholerae strains and serotypes led 
to an investigation to determine a common detecting factor, which was directed towards 
environmental variables. 
 
Early environmental studies of cholera were unsuccessful in detecting habitat of V. cholerae, such 
as domestic animals or human carriers (Pollitzer, 1954). However, in the late 1960’s the bacterium 
was detected in environmental water samples collected in cholera-free regions (Mukerjee et al., 
1965; Pollitzer et al., 1959).  

Those V. cholerae were subsequently shown to be associated with zooplankton (Kaneko & Colwell, 
1975; Kaper et al., 1979; Tamplin, n.d.). The environmental variables that define the habitats of 
Vibrio cholerae were demonstrated in extensive studies carried out globally from 1970-2000 
(Bougoudogo, 1998; Colwell, 1996; Colwell & Huq, 1994; Colwell & Huq, 1998; Lobitz et al., 2000; 
Mata, 1994).  

Between outbreaks, and during unfavourable environmental conditions, the bacterium persists in 
environmental reservoirs in a viable, but non culturable state (Roszak & Colwell, 1987). Based on 
extensive environmental microbiology studies, it has been established that V. cholerae is 
autochthonous to pond, river, estuary, coastal, and marine ecosystems, with copepods as its 
host/vector. Copepods are zooplankton, comprising a significant component of the aquatic fauna 
of rivers, bays, estuaries, and the open ocean, are the major host/vector of cholera (Conner et al., 
2016; A. Huq et al., 1983).  

Environmental factors that drive the prevalence of V. cholerae in the environment (and are 
associated with increased number of cases of cholera in an outbreak), include warmer sea surface 
and coastal water temperatures (Akanda et al., 2011; Lobitz et al., 2000; Vezzulli et al., 2016).   

Several environmental and climate variables are linked to proliferation of V. cholerae and 
incidence of cholera, including: 

 precipitation (Hashizume et al., 2008); 
 flooding (Koelle et al., 2005); 
 sea surface temperature and height (Lobitz et al., 2000);  
 river level and freshwater discharge (Akanda et al., 2011; Schwartz et al., 2006); 
 coastal salinity (Miller et al., 1982); 
 dissolved organic material (Neogi et al., 2018); 
 chlorophyll (Constantin de Magny et al., 2008), and; 
 components of phytoplankton and zooplankton (Constantin de Magny et al., 2008; de 

Magny et al., 2011).  Epidemiological surveillance suggests a link with estuarine 
ecosystems, namely river and coastal regions (Lipp et al., 2002). 

2.4 Endemic and Epidemic Cholera 

Based on analysis of cholera records maintained during British India from 1823-1875, cholera has 
been defined as occurring in two dominant forms:  

1) Epidemic: characterised by sudden and sporadic occurrence of a large number of 
cases, and 

2) Endemic: where cholera cases occur at a baseline level throughout the year, with 
distinct seasonal peaks(Anwar Huq et al., 2017b; Rakibul Khan et al., 2019, p.).  
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Epidemic cholera is hypothesised to be related to elevated air temperatures followed by above- 
average precipitation, in concatenation with insufficient and/or damaged water, sanitation, and 
hygiene (WASH) infrastructure. This places the human population at a high risk of interaction with 
cholera bacteria and a subsequent disease outbreak (Huq et al., 2013).  

Endemic cholera is associated with a constant occurrence of cholera cases, primarily in regions 
where coastal or terrestrial water systems create favourable conditions for growth and proliferation 
of Vibrio cholerae (Jutla et al., 2013). Under certain environmental conditions, a sustained epidemic 
mode of cholera can evolve into the endemic form in regions where there is enhanced and 
continuing exposure to, and transmission of, V. cholerae. 

As a pandemic disease, cholera affects millions in vulnerable human populations (Clemens et al., 
2017) and is a dominant water-borne disease in Latin America, sub-Saharan Africa, and Southern 
Asia (Ali et al., 2015; Jutla et al., 2010a).  

2.5 Predicting Cholera 

In Haiti, during the months following Hurricane Matthew, WASH infrastructure was extensively 
damaged which exposed the population to unsafe drinking water (Huq et al., 2017b). Analysis of 
the epidemiological data showed cholera risk could be predicted successfully by employing 
environmental and epidemiological factors.  

Since March 2015, Yemen, a coastal Middle Eastern country, has suffered violent surges of civil 
unrest (Sharp & Salaam-Blyther, 2017), and in October 2016, the country reported an outbreak of 
a few cholera cases. By the end of 2017, Yemen accounted for ca. 80% of cholera cases worldwide 
since 2015 (WHO, 2018).  

During the first six months of the outbreak, cholera in Yemen surpassed the number of reported 
cases in Haiti over a span of seven years (ca. 815,000 cases between 2010-2017), when the 
Haitian cholera had, until then, been considered historically to be the largest cholera epidemic 
(Lyons, 2017). The Yemen cholera epidemic was considered one of the worst public health 
disasters in recorded history (Federspiel & Ali, 2018), until COVID-19. 

Cholera is unlikely to be eradicated globally since the disease-causing agent is autochthonous to 
aquatic environments and plays a role in their carbon and nitrogen cycles (de Magny et al., 2008). 
Furthermore, there is mounting evidence that warming sea surface temperatures are associated 
with spread of Vibrio spp (a common group of Gram negative bacteria) and emergence of human 
disease globally (Vezzulli et al., 2016).  

Disease predictions can be achieved by recognising that disease progression comprises two 
components: trigger and transmission. These, together, result in an outbreak and, subsequently, a 
public health emergency (Khan et al., 2019). 

2.6 Operational use of the CRM 

The CRM comprises a trigger (Huq et al., 2017c; Jutla et al., 2017b) module, which uses data on 
precipitation, temperature, population and (WASH) infrastructure to compute a risk score, with 
values that vary between 1 (high) and 0 (low) in a given region.  

The trigger algorithm identifies conditions of anomalous temperature and rainfall, providing an 
assessment of cholera risk for the following four weeks (Anwar Huq et al., 2013; Antarpreet Jutla 
et al., 2015) for a given region. Details of model development and algorithmic architecture have 
been published and referenced in Annex 4 (Khan et al., 2018a). 

The CRM includes data from a range of sources: 

 Rainfall data:  Daily and monthly rainfall data at two different resolutions were obtained 
from the National Aeronautics and Space Administration (NASA). 

Monthly rainfall data, at a resolution of 0.25o X 0.25o from the Tropical Rainfall Measuring 
Mission (TRMM) were employed to compute the long-term average (from 1998 to 2018). 
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Daily rainfall data at a spatial resolution of 0.1o X 0.1o were obtained from the Global 
Precipitation Mission (GPM) and used to determine precipitation variation from long-term 
average at resampled data points.  

 The average correlation over land between GPM and TRMM data is very high (>0.90) with 
small bias (unidirectional-negative bias) (Liu, 2016). A recent Yemen focussed study (AL-
Falahi et al., 2020), which considered only one governorate, found that TRMM precipitation 
data were statistically significantly correlated with limited available observed gauge data. 
Therefore, our confidence in using these two datasets remains high, especially given that 
we are not using absolute precipitation. Instead, we are computing anomalies and 
thereafter binning the data based on standard deviation of TRMM datasets (details on 
methodology in Annex 4). Air temperature: Daily and monthly data for air temperature on 
the surface, at a spatial resolution of 0.5o X 0.625o were obtained from the NASA Modern-
Era Retrospective analysis Research and Application, Version 2 (NASA-MERRA 2), and 
used to compute long-term averages and calculate anomalies.  
 

 Population data: LandScan population data at a spatial resolution of 1 km x 1 km were 
obtained from Oak Ridge National Laboratory and used in the model. Model output was 
resampled at 1km. The population data is a static data, implying that the data does not 
change over time steps.  
 

 Epidemiological data (used for evaluation): Weekly cholera reported cases at the 
governate level between January 2017 and December 2018 were provided by the Early 
Warning, Alert and Response System EWARS and between January 2019 and July 2019 
by the Assessment Capacities Project ACAPS [WHO, 2020].  

 

 
  



 
 

Page 17 of 100 
© Crown copyright 2021 Met Office 

OFFICIAL 

3. Rainfall Forecasts 
 
3.1 Yemen’s Climatology Relevant to the Study 

The Climate of Yemen can be described as a subtropical dry, hot desert climate with low annual 
rainfall, very high temperatures in summer and a big difference between maximum and minimum 
temperatures, especially in the inland area. 

The regional distribution of rainfall in Yemen is affected by the country’s topography, particularly 
by the Sarawat mountain range which runs down the western coast of the Arabian Peninsula.  

Moist winds arriving in Yemen from the Red Sea, or as part of the south-westerly monsoon, are 
lifted by the mountain range causing significant precipitation. This orographic enhancement of 
precipitation means that much of the rainfall in Yemen occurs in the west, where much of the 
population is also located. The seasonal precipitation patterns in this region are largely governed 
by the locations of the Intertropical Convergence Zone (ITCZ) and the Red Sea Convergence Zone 
(RSCZ). 

The ITCZ is a band of low pressure formed where the Northern Hemisphere trade winds meet the 
Southern Hemisphere trade winds. This band moves seasonally with the thermal equator between 
the Tropic of Cancer and the Tropic of Capricorn and is accompanied by a band of precipitation 
closely aligned with it. The RSCZ refers to the convergence zone in the Red Sea where north-
westerlies from the Mediterranean meet with south-easterlies from the Gulf of Aden which also 
produces precipitation. 

The RSCZ is active between March and May, producing precipitation in the west of Yemen; the 
ITCZ is active over Yemen between July and September (Farquharson, Plinston, and Sutcliffe 
1996). Together the RSCZ and the ITCZ produce a bimodal seasonal distribution of precipitation 
with one peak between March and May and the other between July and September. In this report, 
a single wet season between April and November is considered. Outside of the two wet periods 
associated with the RSCZ and ITCZ, Yemen is largely dry. The region does experience Tropical 
Cyclones, e.g. Chapala, Megh, Luba. However, the specific risk from tropical cyclones has not 
been assessed in this report as it is out of scope of the aims of the analysis undertaken here. 

3.2 Met Office Rainfall Forecasts for Yemen 

Alongside UF’s CRM products that were sent to UNICEF in Yemen to support their cholera 
prevention activity, the Met Office started to provide weekly rainfall assessments. The Met Office 
service comprises of the following two components, Yemen Rainfall Assessment (PDF of MS 
PowerPoint slide-deck) and Yemen Rainfall Guidance (PDF and MS Word, including a narrative 
forecast and district level rainfall forecast tables). These are sent to a distribution list provided by 
UNICEF every Monday morning. 

The service is provided by the Global Guidance Unit (GGU) at the Met Office who provide 24-hour 
guidance for the interests of the UK and other partners globally. The GGU critically assess a wide 
range of models (including the Met Office Global Model, ECMWF, GFS) and observational data 
and provide guidance on the 'best possible forecast' on high-impact weather events from the 
available models. To assess whether the hazard will be impactful, the GGU team are required to 
understand the local vulnerabilities and exposure to the hazards. 

3.2.1 Yemen Rainfall Guidance  

The Yemen Rainfall Guidance provides a summary, a 7 day hindcast, a 7-day forecast, a 4-week 
outlook and ten-day district level rainfall tables. It is a narrative description of the current weather 
in Yemen. If high impact weather is expected, this will be highlighted.  
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This is a recent example, 

‘A period of heavier than usual showers is expected for western Yemen from Thursday to Sunday 

Forecast next 7 days 

The dry period will continue through to Wednesday. However, from Thursday there will be an 
increased threat of showers across western Yemen, especially across the Highlands and coastal 
plain. There could be isolated accumulations of up to 5-10 mm in a day and perhaps as much as 
10-20 mm over a 4-day period in a few places. However, much of the country will remain dry.’ 

This narrative is followed by tables which list the Priority 1, 2, 3 and 4 administrative districts (for 
cholera) and the associated level of forecast rain. Rainfall is categorised by colour in terms of daily 
accumulation (as defined by the Global Guidance Unit and described in Table 6). 

 

 

Figure 3a: Example of rainfall predictions for Priority 1 Districts (priority districts defined by cholera risk 
assessment carried out for the oral vaccination campaign) 

 

3.2.2 Yemen Rainfall Assessment 

The Yemen Rainfall Assessment is a set of slides (MS PowerPoint in pdf format) and includes a 
rainfall accumulation hindcast (images of satellite derived rainfall accumulation), rainfall forecasts, 
and site- specific (main cities) ensemble rainfall forecast accumulations. The three hindcast maps 
below show satellite derived rainfall over Yemen during the previous 1, 7 and 30 days.  

 

Figure 3b: Satellite derived maps of rainfall accumulations over Yemen  

The following maps show the spatial distribution of rainfall over Yemen for the next six days. The 
first example takes rainfall accumulation from the Global Model that has a spatial resolution of 
10 km and shows accumulation up to 6 days. The second example uses a high-resolution local 
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area model (the Crisis Area Model, 4 km) and shows accumulation on day 1. The high-resolution 
model takes its boundary conditions from the global model and is available out to day 2. The final 
example uses the Global Model and shows the accumulation on day 3. 

 

 
Figure 3c: Examples of maps of forecasted rainfall accumulations over Yemen  

The final section has site-specific rainfall accumulation forecast meteograms for the main 
populated locations, which use the European Centre for Medium-Range Weather Forecasting 
(ECMWF) ensemble prediction system (EPS). The EPS produces a range of probable forecasts 
(instead of a single forecast) by running several weather forecasts using different conditions to 
capture the variability in the atmosphere. 

 
Figure 3d: Example of city level forecast  

3.3 UNICEF requirements 

These products were set up in April 2018 following discussions with UNICEF and testing of various 
formats. After prototype forecasts were created and refined with UNICEF over a period of a few 
weeks, the Word summary forecast and PowerPoint maps were finalised.  

After receiving the forecast for a few months, discussions with UNICEF revealed that the most 
useful element of the forecast were the tables described in section 3.2.1 as these could be 
considered against cholera case data presented at district levels. These were therefore provided 
in an Excel format to make them easier to integrate with other data types.  

The distribution list for the rainfall forecasts includes UNICEF and WHO staff in Yemen as well as 
staff at UNICEF headquarters and the FCDO. 
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3.4 Model performance 

The Met Office’s Global Model is one of the top five global forecasting models, compared to NOAA, 
ECMWF, NCEP, GFS, and consistently rated as one of the most accurate through independent 
and verified methods1. 

The Yemen daily rainfall accumulation forecasts from 3 days to 6 days ahead are produced using 
the Met Office’s Global Model, which covers the world at a resolution of 10 km (2). In this model 
the convective processes are represented through statistical functions (parameterised convection). 
The Crisis Area Model, which downscales the global model boundary conditions to provide a 4km 
resolution is used for days 1-2 ahead (this model is only run for a 48-hour period), is a convection-
permitting model. This means that processes that lead to convective rain can be captured within 
the model, however not at the resolution to resolve the convective rain, which occurs at smaller 
scales. To be able to capture convective rainfall, the model needs to be convection resolving, which 
would only be possible on a very high resolution limited area model ~1.5km. 

As there were no rain gauges in Yemen providing observations of rainfall during the period of this 
study, a satellite derived observation data set (NASA Global Precipitation Measurement dataset) 
was used. The use of satellite data for forecast model verification is discussed in Section 6 and 
Annex 5. 

 

 

 

  

                                                
1 https://apps.ecmwf.int/wmolcdnv/scores/surface.time_series/tp 
2 The km of the model refers to the size of the gridsquare numerical models use to represent the atmosphere. 
Higher resolution models are those with fewer km and generally provide a greater level of accuracy 
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4. Use of the CRM and rainfall forecasts in Yemen (Contextual Analysis) 
 
4.1 Cholera in Yemen 
 
More than five years of conflict between government forces and Houthi rebels (among others) have 
pushed Yemen to the brink of collapse and caused its people to suffer from one of the world’s most 
complex and destructive humanitarian crises. Access to food is limited, fighting leads to injury and 
death, millions of children are unable to go to school and deadly diseases spread rapidly. 
 
Even before the war, Yemen was described as a country that was "beset by circumstances that 
made it ripe for cholera" due to high poverty rates, frequent droughts and water access problems 
and sanitation for only half the population (Qadri, Islam and Clemens, 2017). 
 

Armed conflict and the resulting displacement of people who do not have adequate food, water, 
housing, or sanitation exacerbated pre-existing conditions and led to a cholera epidemic which has 
been described as the worst in recorded history. 
 
The UNICEF and World Health Organization (WHO) executive directors stated in 2017: 
 

"This deadly cholera outbreak is the direct consequence of two years of heavy 
conflict. Collapsing health, water and sanitation systems have cut off 14.5 million 
people from regular access to clean water and sanitation, increasing the ability of the 
disease to spread. Rising rates of malnutrition have weakened children's health and 
made them more vulnerable to disease. An estimated 30,000 dedicated local health 
workers who play the largest role in ending this outbreak have not been paid their 
salaries for nearly ten months” 

 
The earliest cases of the disease in Yemen were in the capital, Sana'a, with some occurring in 
Aden. By the end of October 2016, cases had been reported in the governorates of Al-Bayda, 
Aden, Al-Hudaydah, Hajjah, Ibb, Lahij and Taiz and by late November, also in Al-Dhale'a and 
Amran. Whilst the 2016 wave was relatively limited in scale, the second (from late April 2017) was 
country-wide and of a different order of magnitude. By June 2017, a total of 268 districts from 20 
governorates had reported cases. Over half were from the governorates of Amanat Al Asimah (the 
capital Sana'a), Al-Hudaydah, Amran and Hajjah, which are all located in the west of the country 
(WHO EMRO). 
 
77.7% of cholera cases and 80.7% of deaths from cholera occurred in Houthi-controlled 
governorates, compared to 15.4% of cases and 10.4% of deaths in government-controlled 
governorates. 

 

Figure 4a.  Reported Cases of cholera throughout the year in 2017, 2018 and 2019.  
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4.2 Monitoring Cholera in Yemen 
 
The Yemen Health Authorities with support from WHO set up an electronic integrated disease early 
warning system in 2013, which gradually increased from 98 reporting sites to 1982 by the end of 
2016. 
 
When the first cholera case is confirmed, public and private health facilities that were part of this 
countrywide cholera surveillance system collated suspected cases using a common line-list 
database (Excel 2010, Microsoft). Using guidelines from the GTFCC, a suspected case was 
described as any patient presenting with three or more liquid stools with or without vomiting in the 
past 24 hours. A confirmed case was a suspected case with V cholerae O1 or O139 confirmed by 
culture.  District surveillance officers (for each of the 333 districts) compiled the list from all health 
facilities in their district. These were sent electronically to the governorate level (23 total 
governorates) each day. Data were aggregated by the Emergency Operation Centre run by the 
Yemen Health Authorities and digitally cleaned by WHO surveillance officers.  
 
Subsequent analysis of the monitoring of cholera in Yemen has found that levels of biological 
testing carried out was low (2,706 biological tests done out of more than 1 million suspected cases). 
An over-estimation of cholera is therefore suspected due to all acute diarrhoeal cases being 
registered as cholera when there are several diseases that lead to diarrhoea in Yemen ((Evaluation 
of the UNICEF Level 3 response to the cholera epidemic in Yemen).  
 
There is also a widespread view that health workers inflated the figures for suspected cholera due 
to fears that too low a figure, or a declining trend, might result in the closure of the relevant cholera 
treatment centre. However, UNICEF’s evaluation team were not able to verify of quantify this. 
 
4.3 UNICEF’s role in Cholera Response in Yemen 
 
UNICEF, the International Committee of the Red Cross, the WHO, Oxfam and Medécins San 
Frontiers are all involved in cholera prevention in Yemen and work with the government’s Ministry 
of Water and Environment (MoWE).  
 
In Yemen, the key activities in the fight against cholera are categorised by the WHO as: 
 

 vaccination (Oral Cholera Vaccine (OCV) campaign began in 2018); 
 the delivery of new health services, such as new treatment centres and oral rehydration 

‘corners’ and nutrition interventions; 
 support of the existing health system; 
 health infrastructure, such as delivery of IV fluids, fuel for hospital generators and provision 

of cholera kits; 
 WASH interventions such as provision of safe water, water chlorination, distribution of 

hygiene kits and hygiene promotion/awareness raising; 
 staff training; 
 epidemiological activities such as disease surveillance; 
 management; and 
 advocacy. 

 
Of these, UNICEF’s role has involved acting as the WASH ‘cluster’3 lead. This has included 
providing safe water to over 1 million people and deploying 20,000 hygiene promoters to run 
hygiene awareness campaigns. UNICEF have also supported the health infrastructure through 
provision of equipment such as medicine, oral rehydration solution, intravenous fluids, and 
diarrhoea kits. 
 

                                                
3 A ‘Cluster’ is a partnership aimed at improving coordination 
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In response to the high rates of cholera in 2017, the Health cluster (run by WHO) and WASH 
clusters became better integrated so that they could coordinate the management of the outbreak 
and combine resources. The MoWE set up a network of Emergency Operation Centres (EOC) 
which bring together governmental, UN and INGO (International Non-Government Organisations) 
and NGO (Non-Government Organisations) partners from across the WASH and Health sectors to 
improve the efficacy of the cholera response. Activities of the EOC involve gathering, analysing, 
and sharing of data to inform strategic and operational decisions.  
 
4.4 Lessons learned from the 2017 wave of the cholera epidemic 

An independent evaluation of UNICEF’s response to the cholera epidemic in Yemen was published 
in June 2018. This suggested that because the scale of the epidemic in 2017 was not anticipated, 
the response system in place was unable to keep pace with its rapid escalation. Whilst the control 
and prevention measures taken were appropriate, the report describes how “this took time to 
emerge, and full operating capacity was not reached until the epidemic was already well 
advanced”. 

The evaluation recognised that timing of response is almost everything and describes how control 
measures can make a substantial difference to the course of an epidemic if interventions are taken 
ahead of the epidemic curve. After the peak of the outbreak, it acknowledges that the effectiveness 
of the response (even if well designed and implemented) will likely be marginal, or at least far more 
limited than if implemented earlier in the outbreak.  

UNICEF’s evaluation report did not consider the use of the CRM and rainfall forecasts to target 
interventions as these started being used in April 2018 and the report was released in June 2018 
and so it was probably being finalised before the reduction in cholera cases was observed. 

 
4.5 The need for predictive tools 
 
The UNICEF evaluation report revealed that it would be better to target resources where they were 
needed most rather than always ‘chasing the epidemic’ (UNICEF evaluation report) there was a 
need to be able to target resources at areas most in need. 
 
The role of environmental factors in relation to cholera risk was considered after a study by 
Epicentre was published in the Lancet (Camacho et al.2018).  This estimated that a weekly rainfall 
of 25mm was associated with a 42% increase in the chance of a person developing suspected 
cholera in the following 10 days, compared to a week with no rain. The study suggested that the 
small first cholera epidemic wave seeded cholera across Yemen during the dry season in 2016/17. 
When the rains returned in April 2017, they triggered widespread cholera transmission.  
Whilst rainfall (and temperature) were known to play a role in the start and spread of cholera, it 
was also understood that this was not a straightforward association since localised differences also 
determined rates of disease transmission (based on findings from Haiti’s outbreak). A tool which 
captured rainfall and localised differences was therefore required (Personal communication from 
UNICEF WASH Cluster Coordinator). 
 
The UF’s CRM was (and is, to our knowledge) the only tool of its type which does this and so in 
April 2018, FCDO supported the provision of weekly CRM data to the Emergency Operations 
Centre (EOC). As the Yemeni Government was unable to provide weather forecasts, FCDO also 
arranged for the Met Office to send weekly weather forecasts.  
 
Before the CRM and rainfall forecasts were used operationally, UNICEF shared the data with the 
EOC. This was done to corroborate the findings of the Lancet study. The EOC also found that in 
districts where there was heavy rain, high numbers of acute watery diarrhoea and cholera cases 
appeared, following the rainfall. 
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The data then started to be used operationally to inform cholera response. Decisions regarding 
where to prioritise interventions were made according to administrative districts in Yemen. The 
rainfall data was therefore provided in a tabulated format (for the top 100 high cholera-risk districts), 
showing the district and forecast rainfall daily accumulation for the next 10 days. 
 
4.6 How forecasts were used 
 
Sub-EOC coordinators prepared a table of the districts most affected in their area (column A in the 
table below). This was prepared ahead of the EOC weekly meeting. The Met Office’s rainfall 
prediction was then added to column (B). Only darkest blue rain in the ‘rain’ category, heavy rain 
and storm prediction were relevant to UNICEF (as shown in Figure 4b below). As UNICEF do not 
meet to discuss the rainfall predictions until the Wednesday of each week (the forecasts are issued on 
a Monday), the first 2 days of the forecast were not used 

 
Figure 4b: From figure 3a in section 3, key to rainfall accumulation categorised by colour  
 
The sub-EOC coordinators then indicated the sub-districts with increasing incidence OR lab 
confirmed case OR acute watery diarrhea (AWD) related death during the previous week. This 
enabled them to identify the sub-districts most at risk of being negatively affected by the predicted 
rains. At the weekly EOC meeting, level of risk was then assigned to sub districts, either 1 (low 
risk), 2 (moderate) or 3 (high) will be given in column D to every sub-district matching the criteria. 
Each entity or branch then planned what they would do in specific sub-districts (column E). 
Preventive actions were and are tailored to the local context which actors understood well.  
 

Priority 
district 

 
 
 

(A) 

Number of 
heavy days of 
rain or severe 

weather in next 
10 days 

(B) 

Sub-district with 
increasing incidence 
OR Lab confirmed 

case OR AWD death 
during previous week 

(C) 

Level of risk  
(1-3) 

3 being the 
highest 

(D) 

Specific actions to be taken at sub-district level 
 
 
 
 

(E) 
Eg. As 
Sabain 

1 SD xxx 3  Increase the chlorination of water 
systems serving this neighborhood; 

 Undertake a sewer clearing in one 
specific zone known to have overflow 
following rains; 

 Check 2 known private water networks 
in the area; 

 Diffuse message on the radio focused 
on the risk of diarrhea diseases after 
rains 

Table 1:  Example of prioritisation of districts according to cholera risk and associated actions 
 
Two basic interventions were intensified: 
 

 The risk communication and hygiene awareness in areas most at risk. These focused on 
the risks related to heavy rainfall consequences, such as cesspit /sewage overflow as these 
would expose people to fecal matter in the street; lead to food in markets being more easily 
exposed to contamination and increase the potential for unprotected wells to be 
contaminated by surface water. Households were given information on the appropriate 
actions they should take to minimise risk. 
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 Reinforcing the chlorination of water piped systems, both public and private, serving the 
population living in the neighborhoods most at risk.  

 
Packages of action related to areas with risk 1,2 and 3 scores are described in the table below. 
These are adapted to the local context. 
 

 
Table 2: Cholera prevention actions according to level of risk of a district. 
 
The map below shows the number of Rapid Response Teams (RRT) operating, in accordance with 
the rainfall forecast, at district level.  UNICEF Case Study on use of Rainfall Forecasts to Reduce 
the Spread of Cholera in Yemen – Annex 3: 

 
Figure 4c: Map showing Rapid Response Teams in November 2019 
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In 2018 (January to November), more than 311,000 suspected cholera cases were reported; this 
was considerably less than the 987,000 suspected cases during the same period in 2017 - a 
decrease of 63%.   
 
The number of districts affected by cholera also decreased from 305 in 2017 to 287 in 2018 and 
the attack rate decreased from 364 to 132, respectively (data from the UN Office for the 
Coordination of Humanitarian Affairs, Humanitarian Needs Overview, Yemen, 2019 and data 
provided by Emergency Operations Room, MoWE, Yemen).  
 
According to the EOR, the RRT's response in 2018 totalled 37,846 visits, which were targeted to 
districts affected by rainfall. Whilst several factors were thought to contribute to this reduction in 
cholera cases, the use of rainfall data to deploy teams in areas where rainfall was predicted was 
seen to have helped to prevent further outbreaks and the spread of the epidemic. 
 
UNICEF continued to work with the EOC to use this data to inform WASH preparedness activities 
and other impacts associated with heavy rainfall.  For example, the rainfall assessment indicated 
that Cyclone Luban was making its way quickly towards Yemen. Having this data enabled UNICEF 
to immediately deploy teams to the targeted areas and ensure that supplies were ready on the 
ground and awareness and cleaning campaigns were conducted. Additionally, any damaged water 
pipes and supply systems in the at-risk districts were repaired, to improve sanitation and sewage 
management and mitigate the health risks from the predicted flooding.  
 

“In mid-February 2019, UNICEF received a report of a collapsed and severely 
damaged sewer transmission line, at risk of bursting, just outside Sana’a old city. 
Thanks to the data received from the Met Office and University of Florida, UNICEF was 
aware that the rainy season was expected to start in March. The Old City is in a densely 
populated area where children often play on the streets. The damaged sanitation 
system was therefore posting a threat to people’s lives, given that cholera transmission 
increases in periods of heavy rain. 
 
UNICEF, together with MoWE, worked immediately on the rehabilitation of the sewer 
lines and set a timeline on completion of the work by 23 February, followed by 
reinstatement of the stonework, ensuring the work could be completed before the rain 
began. Whilst this was a quick fix solution to a potential cholera outbreak, it also 
provided a long-term solution of strengthening the sanitation system in Sana’a city.”   
UNICEF Case Study, Annex 3 

 
 
4.7 ‘No Regrets’ Interventions 

 
UNICEF describe the actions they take which are informed by the rainfall forecasts (and until 2019 
the CRM) as ‘no regrets’. In the parlance of anticipatory action, this describes:  
 

“.....actions by households, communities, and local/national/international institutions that can 
be justified from economic, and social, and environmental perspectives whether natural 
hazard events or climate change (or other hazards [in this case cholera] take place or not. 
"No-regrets" actions increase resilience, which is the ability of a "system" to deal with 
different types of hazards in a timely, efficient, and equitable manner.  (Siegel, P 
Jorgensen, 2009; UNDP, 2010).” 

 

When actions are taken but are not necessary (because the hazard does not occur), they are 
described as having been taking ‘in vain’. For time bound actions, there is often a loss associated 
with this (such as distributing perishable items which are then not needed). 
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The benefit of ‘no regrets’ actions is that they still have value in these circumstances. For instance, 
households in areas where a RRT conducted WASH awareness raising will still be better prepared 
should cholera occur. 
 
For this reason, UNICEF are more concerned about ‘false negative’ predictions of rainfall and 
cholera than ‘false positive’. For example, saying that it is not going to rain, but it does (false 
negative) means actions will not have been taken when they were needed, whereas saying that is 
it going to rain, and it does not (false positive) means actions will have been taken that may end 
up being ‘in vain’. Because the actions (such as WASH training) are ‘no regrets’, the consequences 
of acting in vain are limited.  
 
The consequences of ‘acting in vain’ play a role in determining how and when early action should 
be triggered and in turn, what level of confidence is required in predictions. In Yemen, the scale of 
the cholera epidemic meant that a tool which could assist with decision making on where to 
intensify interventions which had more than a 50/50 level of accuracy (“better than tossing a coin”) 
was helpful (the actual accuracy of the tools used is discussed in sections 5 and 6). In a different 
context, a higher level of certainty maybe required. 
 
Furthermore, whilst determining if actions have been taken ‘in vain’ is easier to assess in a DRR 
context where the risks are climatic (a cyclone was predicted but didn’t occur), this is harder to 
determine for disease control, as a predicted epidemic may not occur because of the risk-based 
interventions taken. This should be considered when assessing the impact of risk-based cholera 
response. 
 
4.8 Preventative action and fatigue 
 
Whilst the concept of taking no regrets actions seems positive and rates of cholera in Yemen are 
currently manageable, UNICEF are starting to observe fatigue, both in terms of those who actions 
are aimed at, and those who deliver them.  
 
For families who are starving, remembering to chlorinate water and wash hands can seem 
unimportant when cholera does not seem to present an immediate threat in their community. 
Equally, for teams of responders (who are often volunteers), the need to invest time and resources 
in preventing a disease which appears to be under control may be questioned. 
 
Demonstrating the value of such actions, to seniors, can also be difficult when their impact is so 
hard to prove, since a range of social, environmental, and political factors may determine the 
spread of cholera in an area. Attributing a plateauing or reduction of cases to early action is 
therefore difficult, especially in the context of increasing rates of vaccination. 
 
Whilst these factors are not affecting cholera response in Yemen, at the current time, they are 
factors to consider if the use of the CRM and rainfall forecasts becomes ‘business as usual’ in 
Yemen and, if a similar approach is taken in a different context. 
 

4.9 How UNICEF use the CRM and rainfall forecasts in 2020 
 

In 2020, following provision of the CRM and rainfall products to UNICEF for two years, the Met 
Office, UF and UNICEF reflected on their use, with the objective of identifying ways to improve 
these in Yemen and to understand how they might be used by cholera response practitioners in 
other countries. 
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It should be noted that due to COVID and the pressures linked to the crisis context of Yemen, the 
engagement between the EACH team and UNICEF was limited and did not provide the anticipated 
opportunities to enrich understanding of how the CRM and Rainfall Assessments were being used. 
The insight reflected here is not as in depth as was as planned so some of the considerations and 
recommendations (described in section 7) have been inferred from the limited dialogue that did 
take place.  
 
As the epidemic is four years old, epidemiological trends have been able to provide a good 
understanding in the country of how the disease behaves during the wet and dry seasons and 
which populations will be most affected.  
 
UNICEF are therefore finding the CRM to be less useful as it “doesn’t provide information on 
anything that is not already known” (personal communication with member of UNICEF Yemen 
team). This may be due to the following: 
 

 Cholera incidence data from 2017 to 2019 shows that the region is experiencing cases 
every month in most of the governorates. This could imply that cholera may be inching 
towards endemicity in the region. Once cholera becomes endemic, then it has a predictable 
seasonal pattern of occurrence, such as during monsoon season in Bangladesh or India. 
The massive outbreaks are limited to severe shocks that further damage water 
infrastructure in a particular region. If cholera is becoming endemic, the transmission mode 
of the CRM would be more relevant than the trigger mode as this predicts the human-to-
human transmission of the disease as oppose to the outbreak. 

 
 UNICEF expressed concerns about the level of accuracy of the CRM so sharing the 

validation work described in sections 5 and 6 will be important in order to explore whether 
using the rainfall assessments in isolation is appropriate when the CRM may have value in 
informing decisions. 

 
A training session was planned in Jordan to support UNICEF to use the CRM but this was not able 
to go ahead and subsequent meetings with team members suggested they found the product hard 
to understand and described the advice offered on what action to take as not being relevant (since 
this was agreed at by the team and national and local levels). The need for training materials and 
training videos (which can be delivered in person or virtually) could therefore help to improve 
uptake of the tool. 
 
Use of the rainfall forecasts for cholera prevention has continued, with these primarily being needed 
during Yemen’s rainy season which runs from April to August. The rest of the year is characterised 
by light or no rain. Warnings of severe or unexpected weather (as referenced above) are also used 
all year round to inform action.  
 
UNICEF describe scanning the main body of the forecast product (the narrative description, maps 
etc) for any severe weather indications, with a particular focus on days 3-6 as this is the timescale 
which accords with the lead times required for action to be feasibly taken in time. The Excel 
spreadsheet which lists districts, and their associated levels of rainfall is then used to inform 
interventions. In the understanding that rainfall does not imply cholera, this data is also compared 
with other data (such as reported cases, sanitation, and movement of people) which is provided 
on a portal by REACH (4). 
 

                                                
4  REACH is a humanitarian initiative providing granular data, timely information and in-depth analysis from 
contexts of crisis, disaster and displacement. The work of REACH directly feeds into aid response and decision-
making by providing accessible and precise information on the humanitarian situation of crisis-affected 
populations. Its online platform allows access to reports, factsheets, maps and other information products 
developed by REACH teams worldwide. 
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Because of the conflict in Yemen, the Yemeni Meteorology Service (the Civil Aviation and 
Meteorology Authority) does not currently issue regular forecasts.  The rainfall forecast is therefore 
being used beyond cholera actors (e.g. for disaster risk reduction and for refugee camp 
management). 
 
UNICEF and REACH are in the process of developing a flood early warning service which will 
consider rainfall forecasts, water catchment data and the vulnerability of populations exposed to 
flooding to inform flood preparation activity. The current format of data provided by the Met Office 
does not support integration into other data sets, so the provision of different formats is being 
explored. When these are operational, the relevance of the rest of the service currently provided 
can be determined.  
 
4.10 Other stakeholders interested in early action for cholera 
 
There is significant interest among the cholera community in the pioneering, risk-informed 
approach that UNICEF have been using in Yemen to prioritise their cholera prevention activity.  
 
The Red Cross, Oxfam and academic organisations are among stakeholders who may have 
appetite to use similar strategies. Before exploring further, they are interested to see if the 
validation work, done as part of this study, can show what level of accuracy the CRM and rainfall 
forecasts have and what this means about how they should be used more generally.    
 
The Red Cross have a sophisticated Forecast Based Financing methodology which is used 
primarily to take disaster risk reduction (DRR) early action in the event of severe weather. However, 
there is interest in adapting this for response to infectious diseases. In Uganda, cholera early action 
plans have been drawn up and triggers for these can be piloted if information on cholera risk is 
available.  
 
The United Nations Office for the Coordination of Humanitarian Affairs (OCHA) supports UN 
partners to take anticipatory action through the Central Emergency Response Fund (CERF). The 
CERF allows UN agencies and other humanitarian partners to have direct access to flexible, timely 
and predictable funding to cover critical gaps, address unforeseen needs and complement 
response efforts. It also supports country level humanitarian partners to initiate early action 
interventions to mitigate the risks of deepening crises.   
 
Like the Red Cross, the CERF is used to support early action in disaster risk reduction contexts 
but there is appetite to trial use of the fund to support early action for infectious diseases, if 
appropriate tools for indicating risk are available. Engagement with the cholera community to 
explore how this could be done suggests that there is appetite to bring interventions forward. 
However, there may be barriers to overcome in terms of stakeholders’ willingness to use predictive 
tools based on the school of thought that cholera is caused by environmental factors (ref section 
2.1). 
 
There is also interest from the joint World Meteorological Organization (WMO) and WHO’s working 
group on the use of predictions for infectious diseases who have set up a pilot study to conduct an 
inter-comparison of different models available.  
 
A key consideration when exploring use of the CRM with other users will be assessing which 
interventions in their package of cholera response measures could be brought forward for use in 
an anticipatory manner. Once these have been identified, the lead time for taking these actions 
and their associated cost can be explored along with the consequences of taking such actions ‘in 
vain’. The necessary confidence needed in the CRM’s predictions can then be assessed and the 
best way of using this alongside other information sources (such as rainfall forecasts and epi data) 
and cholera models determined. The way cholera risk information is shared (e.g. web platform, 
emails) and the interplay between national, regional, and global actors in cholera response also 
needs to be considered.   
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5. CRM validation in Yemen 

 
The analysis of the CRM was performed to understand how well predictions of cholera risk 
generated by the CRM (in trigger mode only) reflected actual cases of the disease in the country. 
 
5.1   Methodology 

 Standard correlation tests were used to understand the strength of association between 
CRM risk scores and cholera cases in all Yemen governorates. 

 For each time point in the weekly CRM output, trigger risk scores were computed and 
compared with total number of cholera cases occurring the following four weeks. That is to 
say that the computed cholera risk (for the following four weeks) was evaluated in near 
real-time. 

 Epidemiological data for 2017 and 2018 was obtained at governorate levels from the Early 
Warning and Response Database. Data for 2019 was obtained from ACAPS (an 
independent information provider operating in Yemen). More detailed data was obtained 
but not in time for it to be included in this validation work. 

 The model’s performance was also evaluated against the Bradford Hill Criteria (BHC) 
(Fedak et al., 2015) which is a framework, although not absolute, comprising a set of ten 
parameters that provides epidemiological coherency for determining causal relationships 
between a public health outcome and factors influencing the outcome. 
 

5.2 Validation process and results in full 

The first indication of cholera occurring in Yemen was detected in October 2016. Epidemiological 
prevalence data became available in June 2017, and the trigger module captured the risk of a 
significant cholera outbreak in Yemen at that time (Figure 5a), with ca. 92% spatial match between 
locations where cholera cases were reported, and high risk (values greater than 0.75) was 
computed.    

 

 

Figures 5a&b: (a) Cholera risk map of Yemen for June 2017 produced on May 30, 2017. (b) Actual cholera 
cases observed in June 2017. 

Although the trigger mode of the CRM has been validated using historical data for Sudan, 
Bangladesh, Mozambique, Algeria, Cameroon, and Haiti, Yemen is unique since epidemiological 
conditions can be assessed in near real-time.  

A well-established public health assessment tool, the Bradford Hill Criteria (BHC) (Fedak et al., 
2015; Lucas & McMichael, 2005) was used to validate the CRM. BHC comprises of a set of ten 
parameters, that provides epidemiological evidence for causal relationships between a public 
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health outcome and factors influencing the outcome, and was used as defining criteria for the 
CRM’s performance. The following sections detail each parameter of the BHC, with respect to 
model performance. 

Strength: This is one of the first parameters of BHC that provides evidence of associational 
relationship between disease prevalence and factors influencing disease outbreak.  

To evaluate strength of the model, correlation was calculated at the governorate level (since the 
data were available at this scale), namely between cholera prevalence from 2017 to 2019 and risk 
values computed (for the same time period) using parametric (Pearson) and non-parametric rank 
correlation coefficient (Kendall Tau scores).  Additional details on correlation methods are provided 
in Annex 4. The Pearson method exhibited significant (correlation and statistical significance values 
in Table 3) positive correlation for all governorates except Aden, as shown in Figure 5c and Table 
3.  

Kendall Tau values were statistically significant (p<0.05) for all governorates (Table 3). This is 
indicative of model being able to capture variability in the actual cholera time series, and hence 
suggest satisfactory model strength.  

The three-year correlation analysis (statistically signification correlation values) provided evidence 
of overall model performance. 
 

Kendall Kendall p-values  Pearson Pearson p-values 

Abyan 0.00000 0.46 0.00000 0.43 أبين 

Aden 0.49779 0.06 0.00111 0.21 عدن 

Al Bayda 0.00000 0.58 0.00000 0.38 البيضاء 

Al Dhale'e 0.00000 0.49 0.00000 0.43 الضالع 

Al Hudaydah 0.00000 0.75 0.00000 0.42 الحديدة 

Al Jawf 0.00000 0.57 0.00000 0.31 الجوف 

Al Maharah 0.00035 0.32 0.00126 0.21 المهرة 

Al Mahwit 0.00000 0.58 0.00000 0.43 المحويت 

Amanat Al Asimah أمانة 
 العاصمة

0.27 0.00001 0.43 0.00000 

Amran 0.00000 0.46 0.00001 0.27 عمران 

Dhamar 0.00000 0.52 0.00000 0.34 ذمار 

Hajjah 0.00000 0.66 0.00000 0.44 حجة 

Haydramaut 0.31 0.00000 0.70 0.00000 

Ibb 0.00000 0.48 0.00000 0.39 إب 

Lahj 0.00000 0.59 0.00000 0.44 لحج 

Marib 0.00002 0.37 0.00001 0.28 مأرب 

Raymah 0.00000 0.50 0.00000 0.42 ريمة 

Sa'ada 0.00026 0.32 0.00129 0.20 صعدة 

Sana'a 0.00000 0.56 0.00000 0.38 صنعاء 

Shabwah 0.00000 0.72 0.00000 0.42 شبوة 

Taizz 0.00000 0.55 0.00000 0.34 تعز 

P value less than 0.05 implies that the correlation value is 95% statistically significant.  
Table 3: Correlation and p-values of weekly cholera prevalence and CRM outputs (all years taken together) 

However, it can be argued that if there were effective intervention strategies, such as robust access 
to WASH, a decline in model performance over the years would have been observed.  
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The CRM trigger module is designed to capture disease initiation in a region; therefore, unless 
there are new outbreak(s), the model performance should decline over the years since 
transmission dynamics should dictate spread of cholera in a human population.  

Accordingly, individual year correlation analysis was performed on a weekly scale. Pearson and 
Kendall-Tau correlation values for each year is shown in Figures 5d and 5e, respectively. Using 
Pearson correlation 19 (of 21), 11 (of 21), and 15 (of 20) governorates in 2017, 2018, and 2019, 
respectively, shows statistically significant (p<0.05) association between computed risk and 
disease prevalence (Figure 5d).  

Using Kendall Tau, 19, 8, and 13 governorates showed statistically significant association for the 
same time period (Figure 5e). In 2017, the model detected increased risk for more than 90% of the 
governorates, with Aden being the only governorate not determined to be at increased risk.  

Decrease in model performance for year 2018 is perhaps an indication of changes in the definition 
of cholera or impacts of intervention strategies to mitigate cholera in the region. However, increase 
of model performance for year 2019 was observed. The improvement in model performance is 
encouraging, however, since the cholera outbreak was an ongoing event in Yemen, it is indicative 
of two speculative conclusions: (a) there were new outbreaks in the region compared to the prior 
year which appears to be true since number of cholera cases increased in 2019 from 2018 (Figure 
4a) or (b) the lapse of intervention activities that may have resulted in increase in cholera cases in 
2019.  

 

 

 

Figure 5c: Correlation coefficients between cholera cases and risk values for all governorates 
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Figure 5d: Pearson correlation coefficient between cholera cases and risk values for all governorates for 
individual years (2017, 2018, 2019) 

 

 

 

 

Figure 5e: Kendall Tau correlation coefficient between cholera cases and risk values for all governorates 
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Specificity: This is the second criterion for evaluating predictive capacity of the CRM and is 
achieved by quantifying causality of model output with cholera prevalence. Causality is quantified 
using three statistical metrics: accuracy, sensitivity, and specificity, as defined below: 

Accuracy = (tp+tn)/(tp+tn+fp+fn)   

Sensitivity = tp/(tp+fn)     

Specificity = tn/(tn+fp)     

In this study, an increase in risk is considered as a true positive (tp) if it captures increase in reported 
cases. A decrease in risk is considered as a true negative (tn) if it captures the decrease in cases. 
If increase in computed risk fails to capture the increase in risk, it is considered a false positive (fp); 
and if a decreased risk fails to capture the decrease in cases, it is considered a false negative (fn). 
The performance matrix with these variables for various governorates is provided in Table 4. As 
shown in Figure 5f, the cholera risk model met all three criteria for causality more than 60% of time 
for nine governorates where more than 100,000 cholera cases had been reported and all together 
these governorates represent about 80% of Yemeni population. Sensitivity and specificity varied 
from 55% to 67%, with averages of 60% and 61%, respectively, indicating ability of the model to 
capture increase and decrease in cholera cases in the region. Accuracy varied between 57% to 
67%, with an average of 60 % for nine governorates (which represent 80% of Yemeni population) 
where more than 100,000 cholera cases had been reported. In summary, causality results of the 
CRM were 60% (averaged) for the key three statistical metrics of accuracy, sensitivity, and 
specificity for nine governorates. Results for the other 12 governorates are not shown as those 
regions only represented 20% of population with sparse cholera cases over three years of study.  

 

Figure 5f: Sensitivity [tp/(tp+fn], Specificity[tn/(tn+fp], and Accuracy[(tp+tn)/(tp+fp+ tn+fn] of CRM.  

 

Conditions Al 
Hudaydah 

Amanat Taizz Ibb Mahwit Amran Dhammar Hajjah Sana 

Fn 21 33 21 30 29 24 26 25 28 

Fp 25 26 27 25 27 28 25 18 23 

Tn 37 46 42 36 38 37 43 36 36 

Tp 42 46 35 34 31 36 41 46 38 

Table 4: Performance matrix for various governorates in Yemen (2017 – 2019) 

Biological Gradient: This parameter is traditionally interpreted as a monotonic gradient, indicating 
direct proportionality of cause of the increase in a disease burden with exposure risk. It has been 
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argued that BHC should include non-monotonic and complex relationships between cause of the 
trigger and transmission of the disease with variation in the reported disease cases (Fedak et al., 
2015). Thus, in this study, to evaluate the biological gradient, the relationship between change in 
the computed risk rate using the model with change in reported disease prevalence was explored. 
To evaluate the incidental (biological) gradient of the model, the positive predictive value (PPV; 
frequently referred to as precision) and negative predictive value (NPV) of the model outcomes 
were computed. PPV is a fraction of positive computed risk, which can capture positive change in 
prevalence. In this study, an increase in relative risk and reported disease was used rather than 
absolute values. NPV is a fraction of negative (decreased) computed risk, which can capture 
negative change in prevalence. These two indicators were computed for the same governorates 
(the nine governorates where more than 100,000 cholera cases had been reported) for which we 
evaluated specificity (causality) of the model and were calculated as follows: 

Positive predictive value = tp/(tp+fp)  [4] 

Negative predictive value = tn/(tn+fn)  [5] 

Using the three-year data, we determined PPV and NPV for the model (Figure 5g). PPV and NPV 
values varied between 57 % to 67 % and 55 % to 67 %, respectively, with an average of 60 %, 
suggesting ca. 60 % of the time, the model correctly responded to increase or decrease in number 
of reported cholera cases. However, for practical use of the cause-effect relationship, temporality 
needs to be included, with cause preceding effect with a lead time. 

 

Figure 5g: Positive Predictive Value (PPV) or precision [tp/(tp+fp)], and Negative Predictive Value (NPV) [tn/( 
tn+fn)] of the trigger module of cholera prediction system.  

Temporality: Epidemiological understanding of temporality is exposure duration and extent of its 
impact in terms of severity or number of incidences. To assess disease risk prediction, lead time 
is an essential criterion because it provides time to intervene and limit impact of a disease outbreak.  

In risk modelling, these lead times can be evaluated in terms of temporality since risk precedes 
incidence of disease. Risk computed using the CRM provides an assessment on likelihood of 
trigger of cholera for the next four weeks (Antarpreet Jutla et al., 2015), providing ample time for 
intervention and mobilisation of resources. Our previous studies quantified the role of 
environmental, climatic, and sociological processes that influenced an outbreak of cholera in a 
population (Anwar Huq et al., 2013; Luque Fernández et al., 2009). The hypothesis presented in 
Figure 2b shows that cholera cases are generally observed four weeks after anomalous warm 
temperatures followed by anomalous high precipitation in those locations where there is significant 
deviation in the behaviour of the population with respect to water use habits caused by damaged 
WASH infrastructure. The hypothesis for temporality of BHC, has been tested in several regions in 
Africa (Antarpreet Jutla et al., 2015), Asia (Rakibul Khan et al., 2018a) and Latin America(Anwar 
Huq et al., 2017c).   
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Consistency: UF’s key hypothesis in Figure 
2b argues that damaged WASH 
infrastructure and a combination of 
hydroclimatic processes favour conditions for 
an outbreak of cholera. This cause and effect 
relationship has been observed in many 
studies (Huq et al., 2013; Khan et al., 2018b; 
Lipp et al., 2002).  

Attributing the cholera outbreak in Peru to El-
Niño events in Central Pacific was one of the 
earliest precursors to this hypothesis 
(Colwell, 1996). Studies conducted using 
data from Bangladesh (Hashizume et al., 
2008) and Haiti (Khan et al., 2017) report a 
strong relationship between rainfall and 
incidence of cholera. In Bangladesh, cholera 
occurs annually in a bimodal cycle. The first 
peak occurs in the spring, and a larger peak 

occurs following the fall monsoon season. Cholera seasonality also coincides with warmest 
temperatures of the year and is reduced to sporadic incidence as the temperature decreases in 
winter (Lipp et al., 2002). Haiti has been a main focus of cholera research since the 2010-11 
outbreaks, which identified rainfall as a critical driver of the disease in that country (Blokesch et al., 
2012). Rainfall can have a significant impact on water resource, e.g., nutrient concentration, 
salinity, pH, river level, and freshwater discharge, which in turn affect growth and persistence of V. 
cholerae and its zooplankton host in the environment. Various studies have determined 
dependence of air temperature and precipitation as dominant hydroclimatic variables impacting 
occurrence and transmission of cholera in various parts of the world (Table 5). The hypothesis has 
been validated for countries in Africa, Asia, and the Americas, which reinforces its repeatability. 

 

Figure 5h: Total cholera cases in Yemen in 2017, 2018 and first 28 weeks of 2019 

 

 

Authors Region  Citation score Climatic variable 

Pascual et al 2000 Bangladesh 587 Temperature 

Lobitz et al 1999 Bangladesh 516 Temperature 

Rose et al 2001 Bangladesh and Peru 492 Temperature 

Huq et al 2005 Bangladesh 342 Temperature, Rainfall 

Griffith et al 2006 Africa 252 Rainfall 

Louis et al 2003 USA 214 Rainfall, Temperature 

Rinaldo et al 2012 Haiti 150 Rainfall 

Table 5: Evidence of consistency using BHC 

Figure 2b (Repeat): Cholera trigger mechanism 
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Plausibility: Cholera is a disease caused by Vibrio cholerae. A warm climate facilitates growth 
and proliferation of the bacterium and enhances metabolic activity. When environmental conditions 
are unfavourable, vibrios have been shown to enter a protective, viable but non culturable (VBNC) 
state whereby the bacterial cells become metabolically dormant (Colwell, 2000; Roszak & Colwell, 
1987). Subsequently, when environmental conditions return to favourable, typically triggered by 
temperature, salinity, and nutrient modification, VBNC cells regain cultivability and virulence 
potential (Oliver, 2010; Roszak & Colwell, 1987).  

Elevated water temperature causes a density differential amongst layers of water in an aquatic 
reservoir, contributing to stratification of bacterial populations. In addition to stratification related to 
temperature, dissolved oxygen, pH, and other physical/chemical parameters determine non-
uniform microbial community profiles in the water column (Huq et al., 2005b; Louis et al., 2003).  

This non-uniformity contributes to those environmental conditions enhancing bacterial growth and 
multiplication. These conditions are favourable for multiplication of zooplankton, namely copepods 
and other chitinous zooplankton, shown by Kaneko and Colwell (1975) to host vibrios, including V. 
cholerae. The three-year study funded by the US National Institutes of Health and carried out by 
Colwell and Huq (Huq et al., 1996) in Bangladesh that included villages in Bangladesh whereby 
simple filtration using sari cloth material as filters resulted in a nearly 50% reduction in cholera. The 
hypothesis was that having proven that copepods were host/vector of Vibrio cholerae, by removing 
copepods and particulate material from household water, cholera case numbers would be reduced.  

That cholera is a dose dependent disease, requiring ingestion of ca. 106 V. cholerae cells/ml water 
(Cash et al., 1974), was the fundamental principle of the hypothesis that removal of 99% of V. 
cholerae as had been demonstrated in laboratory experiments (Huq et al., 1996) would reduce the 
number of cases of cholera.  This was the basis of studies carried out in the remote villages of 
Bangladesh. Thus, employing simple sari cloth filtration by village women effectively removed 
zooplankton and particulate matter from drinking water and reduced exposure to V. cholera and 
the number of cases of cholera by nearly 50% (Colwell et al., 2003; Huq et al., 1996).  

The ecological parameters enhancing growth and proliferation of cholera bacteria frame the model 
developed for risk prediction. Heavy rainfall that follows a period of high air temperature aids 
explosive growth of bacteria in water bodies serving communities as drinking water source (Huq et 
al., 2013). Thus, an inadequate water supply infrastructure exposes a population to untreated 
water. Yemen, a Middle Eastern country grappling with war and frequently experiencing floods, is 
a region with population exposed to poor WASH conditions, a factor by far a dominant sociological 
cause of the continuing cholera epidemic rampant in most of its governates. Thus, identifying and 
describing mechanics of the trigger, a rational clarification of the ‘black box’ between the biology 
and ecology of infectious agent and disease epidemiology are now possible. 

Coherence: In the environment, an increase in V. cholerae populations was observed in water and 
plankton samples collected in a longitudinal, multi-year study carried out in the Chesapeake Bay, 
Maryland. When water temperature was above 19oC, V. cholerae populations in the water column 
proliferated with elevated temperatures (Louis et al., 2003). Similarly, water samples collected in 
estuarine zones of the Bengal Delta yielded similar results confirming enhanced growth of V. 
cholerae in warm pond water (Neogi et al., 2018). Furthermore, 5oC increase in water temperature 
resulted in a 30-fold increased risk of a cholera outbreak with a lag of six weeks (Huq et al., 2005b). 
Additionally, Pruzzo, Vezzulli, and colleagues reported a global warming trend in sea surface 
temperature was found to be strongly associated with proliferation of populations of Vibrio spp. and 
emergence of Vibrio related disease (Vezzulli et al., 2016). These observations in combination with 
findings from laboratory experiments conducted in different regions of the world (Table 5), comprise 
a crucial validatory underpinning experimental evidence supporting the hypothesis of this study 
(Figure 2a). 

Experiment: Various studies have associated the variability in hydroclimatic variables with cholera 
trigger and transmission risk (de Magny et al., 2008; Huq et al., 2017b; Jutla et al., 2010a; Jutla et 
al., 2015). As discussed above, laboratory-based investigations showed V. cholerae thrives in 
water with temperatures between 20 and 45oC (Martinez et al., 2010). Experimental studies have 
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shown increased risk of cholera when ambient air temperatures rise to between 19 and 28oC (Hood 
& Winter, 2006; Louis et al., 2003) and there is also increasing water entrapment (Huq et al., 2013; 
Khan et al., 2019). Temperature and precipitation are essential factors, but separately do not trigger 
or control cholera spread (Paz, 2009). The combination of warm temperature convergence with 
heavy rainfall and inadequate WASH infrastructure (Sasaki et al., 2009; Taylor et al., 2015) leads 
to outbreak of the disease (Huq et al., 2013; Jutla et al., 2015). Since V. cholerae is a naturally 
occurring inhabitant of the aquatic environment (Grim et al., 2009; Mishra et al., 2011), conditions 
favouring its growth and multiplication show incorporating a single parameter provides, at best, an 
incomplete description of disease trigger and transmission of cholera. The CRM incorporates both 
temperature and precipitation as hydroclimatic variables with experimentally demonstrated 
significant association with V. cholerae proliferation and cholera. CRM provides a tool for 
policymakers and an intervention committee to implement preventative measures in regions that it 
is based on trigger and transmission dynamics.  

Analogy: It is unfortunate, but cholera outbreaks are a regular phenomenon in regions subjected 
to positive anomalous precipitation associated with positive anomalous ambient air temperatures 
(hydroclimatic conditions) (de Magny et al., 2008; Huq et al., 2013; Jutla et al., 2010b; Khan et al., 
2017) in regions with damaged WASH infrastructure(Huq et al., 2013; Khan et al., 2018b). Previous 
results suggest that the odds of occurrence of cholera is 1.5 times higher when precipitation is 
higher than climatological average (Jutla et al., 2013). Similarly, chances of cholera increase 6-
fold if the air temperature was above climatological average for 2 months preceding the 
disease outbreak (Jutla et al., 2013).  

Spatial analyses done using data from India, Bangladesh, Nepal, Mozambique, Cameroon, Central 
African Republic, Congo, and Zimbabwe exhibit a similar hydroclimatic pattern related to cholera 
outbreaks (Ali et al., 2015; Jutla et al., 2010b; Khan et al., 2017; Nasr-Azadani et al., 2016; Sharp 
& Salaam-Blyther, 2017).  

Damaged WASH infrastructure accelerates interaction between Vibrio cholerae, thereby   
enhancing characteristics of the available water resource, notably lack of safe water, sanitation, 
and hygiene, increasing the likelihood of waterborne disease in the population. In 2015, Nepal 
demonstrated how sufficient WASH infrastructure can reduce an outbreak, even under 
hydroclimatic conditions favouring an outbreak of cholera (Khan et al., 2018a). To control spread 
of cholera in a population, policymakers could be recommended to emphasize primarily WASH 
infrastructure to achieve reduction of cholera, as was observed in 2018 

 

Figure 5i: Total number of cholera cases from 2017 to 2019 in Yemen. 

Reversibility: WASH, one of the parameters included in CRM trigger analysis provides a means 
for testing reversibility of the model. After the 2015 earthquake, Nepal presented environmental 
conditions that could be considered favourable for a massive cholera epidemic (Khan et al., 2018b). 
However, the observed cholera cases were lower than anticipated disease burden in that region. 
The lower number of cholera cases than envisioned was attributed to effective WASH infrastructure 
and WASH facilities appear to have played a crucial role in controlling the Nepal cholera outbreak. 
The CRM, by incorporating WASH, precipitation, and ambient air temperature, can test reversibility. 
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Any variable failing to demonstrate positive anomalous variability from long-term average can be 
interpreted as indicating minimal cholera risk.  

5.3   Summary of methodology and results 

 The CRM was able to statistically capture variability in the occurrence of cholera in Yemen 
in 20 of the 21 governorates (for the time series 2017-2019).   

 For governorates comprising 80% of Yemeni population and where total cholera cases are 
high (more than 100,000), the model was able to predict risk of cholera with 60% of 
accuracy.  

 The objective of this study was to validate the near-real time prediction of cholera risk 
provided by the CRM from 2017 to 2019. Bradford Hill Criteria (BHC), a widely used 
epidemiological fact-finding criterion, was employed to assess the performance of the 
trigger mode of CRM. BHC is composed of ten parameters that provide epidemiological 
evidence for causal relationship between public health outcome and factors influencing an 
outcome. The ten criteria factors of BHC shows that outputs from CRM pass an 
epidemiological test of causation of cholera with environmental and sociological 
parameters embedded within the architecture of CRM. 

 Using BHC, analysis of sensitivity, specificity, accuracy, and precision indicate that 
changes in model risk scores predict a change in the number of cholera cases.  

 The performance of the model, based on correlative (values range between 0.3 to 0.7) 
assessment, was best in year 2017 followed by year 2019 and then year 2018.  

 Only the trigger mode of the CRM was used, and therefore, the ability of the model to 
associate CRM outputs with 2017 cholera cases is significant since it implies that the model 
has relevance in forecasting cholera risks for up to the following four weeks. The trigger 
model captures cases when disease outbreak starts. A limitation is that case definitions 
change. 

 Al Hudayah (one of most densely populated governorates) had a statistically significant 
association of risk with number of cholera cases throughout the year. At the time of writing 
this report, we do not have enough information on interventions in this specific region.  
 

5.4 Considerations  
 

 The lack of performance of the model in 2018 is an indication of either effectiveness of 
intervention activities or the impact of changes in the definition of cholera cases in the 
region. This highlights the importance of collection and preservation of long-term 
surveillance data in regions with poor water and sanitation infrastructure. Also, global rule-
sets should be adopted as and when cholera cases are reported at a new location so that 
a consistent recording of data on intervention activities can be ascertained. 

 The performance of the CRM in 2019 was lower than 2017 when a cholera outbreak was 
reported in Yemen. The increase in performance (a greater number of governorates 
showing statistically significant correlation with risk) is perhaps an indication of either lapse 
of intervention activities or new cholera outbreaks occurring in the country.  

 Assessment of impacts of interventions were not included in the analysis. This was due to 
non-availability of data on provisions on water, sanitation and hygiene.  

 The analysis shows cholera cases being reported consistently in the country each week, 
from 2017 to 2019, indicating cholera in the region may be transitioning toward endemicity 
(seasonal outbreaks of cholera over several years). Cholera cases are still being reported 
(as of March 20, 2020) in Yemen. The CRM outputs provided are currently in the trigger 
mode of the model which is developed for epidemic cholera. The transmission mode (for 
endemic cholera) may therefore be more relevant to UNICEF, if understanding on how this 
is used is considered in collaboration with UNICEF. 

 Access to safe water and sanitation is based on assumptions to create a blanket baseline 
across the country and remains static in the CRM’s algorithm. Different communities will 
have better or worse access to safe water and sanitation than others. If information on 
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WASH infrastructure was available, it is expected that values for sensitivity, specificity, 
accuracy, and precision metrics would improve significantly.  
 

5.5 Limitation(s) 

 The results presented in this study are based on governorate level. The large spatial 
averages of epidemiological data on governorate scale limits ability for accurate 
determination of hot spots of this disease. 

 Data on intervention and mitigation activities, as well as WASH was not available. This 
poses limitations to near real time updates on accessibility of safe drinking water and 
adequate sanitation facilities.  

 The CRM uses static information on population density. Therefore, information on 
population movement should be encouraged routinely rather than sporadically.  

 There is an inherent limitation on the spatial resolution of the model. Currently, the results 
are averaged on the governorate scales (1km sq.), which may not be appropriate for the 
decision making at more local levels. Better understanding needs to be gained on how 
UNICEF Yemen make decisions to take preventative action and what size areas these 
decisions apply to. 

 
5.6 Recommendations 
 

 In many countries where epidemic cholera is a frequent occurrence, preventative measures 
will already be underway in anticipation of an outbreak (often on a seasonal basis).  In 
these contexts, the information from the CRM can be used to support planning and 
preparations and to intensify cholera control measures in areas which the CRM predicts to 
have a higher risk of the disease.  

 Forecast rainfall data should be ingested into the CRM and performance should be 
evaluated (based on methodology provided in our previous studies: (Huq et al., 2017c; 
Khan et al., 2018a). This would mean the model would still have a 4 week validity from the 
date of issue, but forecast data would give a 1 week lead time into this which may enable 
more meaningful and proactive interventions. 

 Intervention and mitigation activities for any water-borne infectious disease are often 
planned after an outbreak has been reported in a particular region, which is a reactionary 
approach. Based on its use in the Yemen context, it is proposed that the CRM has the 
potential to be used to support planning and preparation and earlier control measures in 
contexts with epidemic cholera and when used as part of a suite of tools used by cholera 
responders.  

 If cholera prevention and intervention activities were taken based on the CRM’s cholera 
risk information, a reduction in the model’s performance would have been observed (i.e. 
the CRM may show cholera risk but it may not be related to cholera cases due to impacts 
of interventions having taken place). Because the model’s predictions of cholera and actual 
incidence of cholera are statistically significant, one interpretation is that this reflects the 
understanding that various aid agencies are not currently using the CRM in operational 
decision making.  The need for provision of support in the form of training and guidance in 
how to use and interpret the CRM (currently in progress) is therefore underlined.  

 A prototype of cyberinfrastructure (which acts a repository for epidemiological and CRM 
data, enables visualisation and provides decision making information) is essential to 
provide anticipatory and logistical support in case of high risk of cholera. Resources such 
as CATAPULT or NASA Disaster platforms may be engaged to develop such 
cyberinfrastructure support. This is critical since there need to be a credible source of 
information to various health ministries and NGOs.  

 Decisions made using cholera risk predictions should be tailored to local contexts and 
actors.  
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6. Validation of the Rainfall forecasts  
 
6.1 Introduction 
 
In addition to evaluating the CRM, which was presented in the previous section, the case study 
evaluates the historical use of meteorological information in Yemen. This is particularly important 
in terms of understanding the added value, and complimentary role these forecasts played. To 
understand the value of the meteorological information provided to UNICEF, we undertook a 
verification of the rainfall forecasts. The precipitation from the forecast models that are used to 
create the Weekly Rainfall Assessments (WRA), specifically the Met Office’s Global Model (GM, 
Walters et al. 2019) and the Crisis Area Model (CAM) are analysed. They are compared to 
observational satellite data to assess how accurate the forecasts are and provide an assessment 
as to what spatial scale they are accurate at, with the view for them to be integrated into an 
enhanced CRM in the near future. The statistical relationship between the WRA and the weekly 
cholera cases is examined to determine whether the reduction in cholera can, at least in part, be 
attributed to the provision of the WRA. 
 
6.2 Methodology 
 
To carry out the verification of rainfall forecasts over the Yemen, daily precipitation accumulation 
data from the CAM and the GM are verified against satellite-derived precipitation data to assess 
the spatial skill of the models. The satellite data used for the verification is Global Precipitation 
Measurement (GPM) data, as used in the CRM. However, the version of the GPM used for the 
forecast verification is the Level 3 Integrated Multi-satellitE Retrievals for GPM (IMERG) (Huffman 
et al. 2014). This final run global product goes through additional calibration and integration with 
available precipitation gauge analyses from around the world. Due to the lack of in situ data in 
Yemen, there is no calibration of the satellite product over this region. Figure 6a shows the region 
over which the precipitation forecast verification was performed. A discussion on the limitations of 
using satellite data, specifically over the Yemen, due to the lack of in situ data, can be found in 
Annex 5. 

 

Figure 6a: Area of verification of rainfall forecasts 

There are two characteristics to precipitation that are important in conducting a verification analysis, 
intensity (in this case daily accumulations), and spatial accuracy. In this study the two 
characteristics are investigated separately, to provide: i) a clearer analysis of the forecasts, ii) better 
guidance, and iii) increase confidence for the users and to give stronger evidence for 
recommendations for future model developments. The approach used in this study categorises the 
daily precipitation accumulation into binary outcomes, depending on whether the accumulation is 
above or below a specific threshold for each grid cell, namely 20 mm/day for the CAM and 
10 mm/day for the GM, the “Take Action” thresholds discussed later. The precipitation events 
forecast can be compared to the observed precipitation at each grid cell and entered into a 



 
 

Page 42 of 100 
© Crown copyright 2021 Met Office 

OFFICIAL 

contingency (hit-miss) table. The results from this analysis are shown in the next section and 
discussed in full in Annex 6. 

The contingency table approach allows analysis of the same variable in different data products, 
such as forecast precipitation and observed precipitation. The output is very useful but can be 
misleading when the forecast and observed precipitation events are far apart with spatial 
inaccuracies, which would not be identified by the contingency table analysis. Generating many 
contingency tables for different areas and with a range of regions is not realistic. To overcome this, 
a more suitable approach to analyse the spatial accuracy of the precipitation events is to calculate 
the Fractions Skill Score (FSS). This evaluates the accuracy of precipitation forecasts against 
satellite observations for smaller areas, then average these areas across the region of interest. 
The results of the FSS analysis are shown in Section 6.2. 

The GGU use four precipitation categories in the WRA product, light rain, rain, heavy rain, and 
storm. An additional category was added, “Take Action”, that corresponds to a threshold used by 
UNICEF to target WASH interventions (Personal Communication, Bulit, August 2019), which is the 
threshold investigated in this study. The thresholds (in mm per day) for these categories are shown 
in Table 6. Due to the models having different spatial resolutions, the thresholds for each rain 
category are different between the two models. 

Precipitation 

(mm/day) 

“Light rain” “Rain” ‘’Take action’’ “Heavy rain” “Storm” 

CAM 0.1 2 20 50 150 

GM 0.1 1 10 25 75 

Table 6: Precipitation thresholds used to create a range of binary fields in mm per day. 

 

6.3 Evaluation of the rainfall accumulations from the forecasts - Contingency Tables 

The contingency tables analysis considers the Yemen domain (100 x 147 grid cells), as shown in 
Figure 6a, for each month. The cells of the contingency table contain Hits, False Alarms, Misses, 
and Correct Rejections and are defined as follows: 

 A Hit is defined as one or more grid cells, in both the forecast and satellite Yemen domain, 
where the precipitation exceeds the absolute threshold. 

 A False Alarm is when none of the grid cells in the satellite data record precipitation above 
the threshold and at least one grid cell in the forecast has a value greater than the 
threshold. 

 A Miss (or False Negative) is where none of the grid cells in the forecast have a 
precipitation event greater than the threshold and at least one of the grid cells in the satellite 
data recorded precipitation above the threshold. 

 A Correct Rejection is defined as when there are no grid cells, in either the satellite or 
forecast data, where the precipitation exceeds the threshold. 

A near perfect forecast would have a high count of Hits or Correct Rejections compared to the 
sample size and a corresponding small number of False Alarms or Misses. Figure 6b shows the 
results of the contingency table analysis for each month in the period January 2017 to August 2019, 
with the cholera count for each month shown as a black line, for the whole Yemen domain. Yellow 
and teal/green bars show when the forecast model and observations agree, with disagreements 
being shown as purple and dark blue. 

Figure 6b shows that the model and observations typically agree over 70% of the time for the whole 
period (2017 to August 2019), with the day 2 forecasts (which are provided from the CAM) showing 
the best performance. For the wet season, the model and observations agree over 80 % of the 
time, with the GM for both the day 3 and day 6 forecasts performing even better than the CAM for 
days 1 and 2. The performance of the GM is consistent for the length of the forecast, i.e. the 
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forecasts for day 6 performing similarly to the forecasts for day 3. There are also a number of 
months which show a perfect forecast (hits and correct rejections only), e.g. August 2017, July 
2018, and August 2018 (for the GM), with several months showing a near-perfect forecast (very 
small number of misses and false alarms). This methodology does not consider any differences in 
the location of the precipitation; this is investigated in the next section. 
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Figure 6b: Stacked histogram showing the proportion of Hits, Correct Rejections, Misses and False Alarms 
for each month between 2017 and August 2019 for the 24-hour precipitation accumulation for day 2 (top 
row) using a 20 mm threshold and day 3 (middle row), day 6 (bottom row) using a 10 mm threshold, the 
“Take Action” thresholds. The dotted line shows the cholera count for that month. 
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6.4 Evaluation of the spatial accuracy of forecasts - Fractions Skill Score (FSS) 

Due to the complex and chaotic nature of precipitation processes, precipitation should not be 
interpreted at the grid cell resolution alone but as an average over several grid cells. As a result, 
any scheme that looks to assess the accuracy of precipitation forecasts should consider not just 
the accumulated amount of precipitation but also the spatial variation of forecast skill around the 
location of interest. For this purpose, we used the FSS (Roberts and Lean 2008) method, whose 
full details are presented in Annex 7. 

This method has been applied, using a fixed accumulation threshold to define a rain event, to 
reflect how the data is used by UNICEF. Therefore, a seemingly poor performance of the model 
than expected may be suggested by this method, especially when compared to other FSS studies. 
The main reasons are due to double-negative scoring when an area of precipitation in one of either 
the model or observations do not exceed the fixed threshold, and the effect of observation bias 
discussed in Annex 5. However, it is still considered an appropriate way to apply this method for 
this study. 

In this study dry days were excluded. This is due to the FSS method not being suitable to compare 
domains which are predominantly dry, resulting in low scores which do not reflect the true 
performance of the model. If less than 0.5 % of the domain exceeded the threshold this was 
considered a dry day and excluded from the FSS analysis. A plot of FSS against the length of the 
neighbourhood square can be used to identify the spatial scale at which the forecast becomes 
useful, FSSufc. The displacement error is half the neighbourhood length identified from the FSSufc 
line. The displacement error indicates how large a difference in location there could be between 
where the precipitation is forecast and where it is observed. 

The size of the domain used for the FSS analysis needs to be sufficiently large to capture the large-
scale meteorological processes that are the main drivers of the precipitation (Mittermaier and 
Roberts, 2010), e.g. the ITCZ and RSCZ. However, this will result in disassociated rain events 
being analysed and compared, e.g., rain in western Yemen and rain over the Horn of Africa. If 
either of these are not captured in one of the satellite data or forecast model, due to the bias and 
using a fixed threshold, this will result in no FSS performance, or an FSS the size of the domain. 
There is no easy solution to this issue and is the cause for some of the spread in the results (grey 
lines) shown in Figure 6c. Further analysis of the FSS results is presented in Annex 8. 

The daily FSS plots for Day 3 in August 2017, 2018 and 2019, excluding dry days, are shown in 
Figure 6c. Each grey curve represents the FSS for each day in the month, when more than 0.5 % 
of the domain exceeds the threshold. The average FSS for these days is represented by the solid 
red curve, along with the 95 % confidence interval (dotted red curves). Figure 6c shows the FSS 
increasing as the size of the neighbourhood size is increased, as expected. The blue horizontal 
line represents FSSufc, the line that demonstrates the spatial scale at which a forecast can be 
considered useful (Roberts and Lean 2008). To add clarity in Figure 6c, the solid purple vertical 
lines guide the reader to the approximate useful mean spatial scale (neighbourhood size), along 
with the bounds (dashed lines) of the upper and lower 95 % confidence intervals (CI). Plots were 
produced for all months between April and November (the wet season) and are presented in Annex 
8.  
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Figure 6c: Daily Fractions Skill Scores for August 2017, 2018 and 2019, using the “Take Action” 10 mm 
threshold for 24-hour precipitation for day 3 accumulation (GM), excluding days where less than 0.5 % 
domain exceeds the threshold. 

When the average FSS curve (grey line) does not cross the FSSufc line (blue line) is when the 
forecast is considered useful. Figure 6c shows that, for August, the model has skill in capturing the 
precipitation between 70 % (2017) and 80 % (2018 and 2019) of the time, shown by the number 
of grey lines crossing the blue horizontal line. No skill is seen for 20 % (2018 and 2019) to 30 % 
(2017) of the time, shown by the grey lines not crossing the blue line. 

Table 7 shows these statistics for all the months which were analysed. Table 7 shows that a lot of 
days are excluded during the dry season, as to be expected, but also there are a number of dry 
days within the wet season. For months with a large number of non-dry days (more than half the 
month) the model typically shows skill greater than 50 % and up to 96 % of the time. There is 
greater variation in performance for relatively dry months, again to be expected. The model shows 
skill during the wet season for 2018 and 2019 greater than 60 % of the time. 

% days showing skill 

(# days included in 

study) 

2017 2018 2019 

Annual 48 (129) 65 (158) 71 (92) 

Wet season 

(April to November) 
46 (114) 69 (142) 62 (87) 

January - (0) 100 (1) - (0) 

February 100 (6) 0 (3) - (0) 

March 33 (9) 29 (7) 20 (5) 

April 60 (5) 75 (20) 59 (17) 

May 53 (19) 58 (19) 63 (16) 

June 29 (7) 55 (11) 82 (11) 



 
 

Page 47 of 100 
© Crown copyright 2021 Met Office 

OFFICIAL 

% days showing skill 

(# days included in 

study) 

2017 2018 2019 

July 38 (21) 96 (28) 82 (17) 

August 71 (28) 81 (26) 81 (26) 

September 29 (21) 0 (15) N/A 

October 22 (9) 93 (14) N/A 

November 50 (4) 56 (9) N/A 

December - (0) 20 (5) N/A 

Table 7: The percentage within each month of how often the model shows skill in capturing the 
precipitation, seen by the grey lines cross the blue horizontal line, for day 3 forecasts, with dry days (less 
than 0.5 % of the domain exceeding the threshold) excluded. The number of days included in the analysis 
are shown in brackets. 

The results show that, for August, displacement errors, an indication of how large a difference in 
location there could be between where the precipitation is forecast and where it is observed, of 
between 150 km and 550 km are obtained using the FSS method for day 3 accumulations. This 
range in values is typical for the results for the wet-season months in this analysis. During the dry 
season, the displacement errors increase, which is to be expected when using this method. When 
the FSS method was applied to the ECMWF model over the European domain the displacement 
error for day 5 precipitation was 375 km (Skok and Roberts, 2016). Whilst the results from this 
study and the one by Skok and Roberts (2016) cannot be compared directly, due to looking at 
different domains which have different meteorological drivers to the precipitation and due to 
different methods of defining a precipitation event, it allows for a comparison of expected FSS 
results. 

For January 2017 to August 2019, both models perform well for days with light rain, i.e. 0.1 mm 
per day, with relatively poorer performance for heavy rain days. However, the performance for 
heavy rain days is similar to that of other national forecast centres’ models. The performance of 
the Met Office GM is routinely compared against the ECMWF, NCEP, and JMA global models 
using four different measures of skill5. For the period 2017 to 2019, the Met Office’s skill in 
precipitation for the Tropics was similar to the ECMWF and both centres’ models frequently 
performed similarly or better than both the NCEP and JMA models, for all four measures of skill. 

 
6.5      Epidemiological relationship between forecast rainfall and cholera 

A statistical model was developed to examine the relationship between forecast rainfall and cholera 
incidence at a country level, the same cholera incidence data source was used as in the CRM 
evaluation but not at a governorate level. The model was fitted using forecast precipitation and 
cholera incidence data from 2017, shown in Figure 6d; this was prior to the WRA being issued to 
UNICEF by the Met Office. This model is then evaluated for 2018 and 2019 to determine whether 
the reduction in cholera incidence can be attributed to the provision of the WRA. Details about the 
statistical model developed are in Annex 9. 

                                                
5 https://apps.ecmwf.int/wmolcdnv/scores/surface.time_series/tp 
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Figure 6d: Weekly counts of cholera cases (red points) and forecast daily precipitation accumulations (blue 

line) for Yemen in 2017, the period over which the statistical model is fitted. 

Following the cholera epidemic in 2017 the number of weekly new cholera cases rose in the second 
half of 2018 to 15 000 cases, peaked again in March/April 2019 at over 30 000 cases and remained 
high with two secondary peaks at two-month intervals (Figure 6d). There was a change in the 
definition of cholera between 2017 and 2018, which is thought to underestimate the number of 
cases in 2018; this definition changed back in 2019. The precipitation-based cholera risk index was 
computed for each week by taking the maximum risk index value and using the forecast model 
dependent 20 mm and 10 mm thresholds. The threshold is represented by the risk index line C = 
0.5 (Figure 6e) and the cholera risk index only exceeds this on two occasions in 2018, consistent 
with the previous observation that precipitation averaged over the whole of Yemen rarely reaches 
the threshold values used. 

 

Figure 6e: Weekly count of cholera cases (top) and computed cholera risk index (bottom) using fixed 
precipitation thresholds of 20 mm for the CAM (days 1 and 2) and 10 mm for the GM (from day 3) 
precipitation forecasts, for Yemen for 2017 to 2019. 



 
 

Page 49 of 100 
© Crown copyright 2021 Met Office 

OFFICIAL 

For 2017, the year before the forecasts were being used to help manage the epidemic in Yemen, 
the RMSE is relatively high at 20,000 (results not shown) and the regression has a Pearson 
correlation coefficient of 0.39 previously calculated from the nonlinear regression. For 2017, the 
negative bias (not shown) means that new cholera cases are underestimated by up to 10,000 (on 
average) when using fixed 20 mm and 10 mm precipitation thresholds. 

The results show a higher RMSE and a positive bias in 2018, compared to both 2017 and 2019. 
For 2019, smaller biases and RMSEs are seen compared to 2017. These results could be 
explained by a number of different factors that could either act independently or in combination: 

1. the precipitation forecasts were used effectively to prevent increases in number of cholera 
cases; 

2. an increase in the number of cholera cases was prevented due to factors other than the 
precipitation forecasts, e.g. through monitoring water supply microbiology; 

3. there is significant scatter in the risk index to cholera count relationship and the results are 
due to a random effect, natural to this type of data; 

4. the annual seasonality which has not been accounted for (only one year, 2017, before the 
forecasts was available). 

An alternative statistical approach to modelling cholera counts, using a Generalised Additive Model 
and where the predictive model is fitted more closely to the 2017 data, is presented in Annex 10. 
However, the conclusions drawn are the same. 

 
6.6 Summary of Rainfall Forecast validation methodology and results 

6.6.1 Methodology 
 The Met Office rainfall forecasts were compared to satellite data, comparing daily 

accumulations of rainfall. 
 Contingency tables (‘hit or miss’) were used to indicate if the forecast daily accumulation 

and observed daily accumulation was above or below certain thresholds (light rain, rain, 
heavy rain, storm and ‘take action’). 

 Fractions Skill Score (FSS) was used to evaluate the spatial accuracy of forecasts (i.e. 
where in Yemen did the forecast say it would rain, and where did it rain), using the ‘take 
action’ threshold to define a rain event. 

 A statistical model was developed to examine the relationship between rainfall and cholera 
incidence at a country level (the same cholera incidence source data as used in the CRM 
evaluation, although not at the governorate level due to time constraints). The model was 
fitted using precipitation and cholera incidence data from 2017, shown in Figure 6d prior to 
the Weekly Rainfall Assessment (WRA) being issued to UNICEF by the Met Office. This 
model is then evaluated for 2018 and 2019 to determine whether the reduction in cholera 
incidence can be attributed to the provision of the WRA. 
 

6.6.2 Results 
 The rainfall forecasts over Yemen have better spatial accuracy for days with light rain, 

compared to days with heavy rain. When the forecasts of light rain are compared with 
satellite data, the expected difference in location between where the rain is forecast and 
where it is observed is close to 11 km, the resolution of the GM. This is seen for all months 
for the years 2017 to 2019. 

 For days with heavy rain, the difference in location between where it is forecast and where 
it is observed is at least 160 km, with the greatest skill in the 24-hour forecasts seen in July 
and August. These differences are smaller than those found for the ECMWF day 5 
precipitation forecast for the European domain (Skok and Roberts, 2016). 

 The very heavy rain observed over Yemen is typically due to small-scale, convective, 
processes embedded within the large-scale drivers. To be able to model these processes, 
forecast models require spatial resolutions of the order of these small-scale processes 
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(~1.5 km). Light rain is driven by the large-scale processes which can be modelled by 
coarser resolution models, e.g. the CAM and GM, hence is forecast more accurately. 

 The precipitation is weakly correlated (a coefficient of between 0.4 and 0.5) with weekly 
number of new cholera cases. This is a similar result as found by Camacho et al. (2018). 

 The statistical model suggests that the targeted interventions made, acting on the weekly 
rainfall assessments, have reduced the number of cholera cases, although more 
epidemiological data prior to 2017 (i.e. more before targeted interventions took place) is 
needed to validate this. This is based on the results from the statistical model, which 
showed an increase in the Root-mean square error (RMSE) in 2018 compared to 2017 and 
2019, and a positive bias in 2018 compared to negative biases in 2017 and 2019. 

 The performance of the Met Office Global Model (GM) in the Tropics for 2017 to 2019 is 
similar to the ECMWF and both centres’ models frequently performed better than, or 
similarly to, both the NCEP (National Centers for Environmental Prediction) and JMA 
(Japanese Meteorological Agency) models. 
 

6.6.3 Considerations 

Inter-annual climate events (e.g. El Niño) and the anomalous environmental conditions (e.g. 
rainfall, temperature, etc.) they generate, have been linked to outbreaks or amplification of cholera. 
The influence of these events on cholera rates in Yemen could be assessed as these events are 
predictable (often quite far in advance) so could provide an earlier warning to UNICEF and others 
of what to expect for the purposes of longer-term strategic planning or OCV (Oral Cholera Vaccine) 
campaigns. 

 
6.6.5 Limitations  

The verification of the forecast models used in the WRA used satellite data as the observations 
data. The limitations of using satellite data are discussed in Annex 5, however the main limitation 
in this study was not being able to investigate the bias between the forecast models and the satellite 
data, which would affect the FSS results. The satellite data was also at the resolution of the GM; 
thus the CAM was not analysed at the high resolution it is run at, which would also affect the FSS 
and contingency table analysis results. 

The statistical model that was used to examine whether the targeted interventions, acting on the 
weekly rainfall assessments, reduced the number of cholera cases, was developed using a very 
small sample of epidemiological data. It also made several assumptions as to how WASH 
interventions were initiated without the WRA, i.e. based on epidemiological case data alone. To 
improve the understanding of the relationship between the WRA and epidemiological data, more 
epidemiological data prior to 2017 is required. 

 

6.6.4 Recommendations 

The current “Take Action” threshold used by UNICEF is a very high precipitation threshold which 
all forecast models have comparatively lower skill at forecasting accurately, as shown by the 
analysis in this report. A recommendation would be to investigate the threshold used by UNICEF, 
following the performance analysis of the models used in the Weekly Rainfall Assessments. The 
aim would be to use a threshold where there is more confidence in the performance of the forecast 
models. It would also be useful to ensure UNICEF understand the limitations of the rainfall 
information, as identified in this report, in terms of its accuracy in forecasting where there will be 
rain, as this may influence the way they use the data. 
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Given the NWP model spatial resolution and the need by UNICEF to action information at fine, 
governorate scale, it may be useful to explore mature statistical model downscaling options, where 
the aim is to create local projections of weather for governorates, districts, and cities. Model 
downscaling, where the spatial resolution of the model is increased, may be appropriate if the 
actions taken for cholera response and wider DRR purposes require better levels of accuracy. The 
format of the rainfall assessment could also be changed so that they can be integrated and interact 
with other data sources, enhancing the ability for them to be used in cholera response and DRR 
purposes. 
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7. Summary and Recommendations 

7.1 Summary of validation results 

UNICEF Yemen’s use of rainfall forecasts and the CRM to influence their cholera prevention 
activity represents a relatively novel approach to cholera control. This paper looked at the reliability 
of these tools and considers how UNICEF’s approach to acting earlier (and the tools themselves) 
can inform cholera response in other areas which are affected by the disease. 
 
After gaining an understanding (from work by Carmacho et al) that heavy rainfall led to an increase 
in cholera cases, UNICEF started to use rainfall forecasts from the Met Office and Cholera Risk 
Model information from the University of Florida in April 2018. The districts which were most likely 
to receive heavy rain and were predicted by the CRM to have high risk of the disease were 
considered against data on the districts with the highest levels of cholera. This was used to prioritise 
where interventions needed to be intensified. The interventions themselves, (mainly WASH 
awareness raising) were classed as ‘no regrets’; if the surge in cholera cases did not entail, the 
communities would still be better informed and prepared in how they could avoid it. The CRM was 
used initially but at the current time, UNICEF are only using the rainfall assessments to inform their 
decision-making. 
 
To assess the reliability of the CRM, its predictions in 2017, 2018 and 2019 were compared to 
recorded cases of cholera in Yemen. In the most populous governorates (comprising about 80% 
of the population), the CRM’s predictions were accurate 60% of the time. Assessments of the 
CRM’s performance in other countries (by UF) also supports this finding. In addition, using the BHC 
framework, analysis of sensitivity, specificity, accuracy and precision, and negative predictive 
value, suggests that the CRM was able to capture weekly changes in the number of cholera cases 
in all of the governorates. The CRM had the highest accuracy in 2017 and UF suggest this may be 
due to the preventative risk-based interventions being taken by UNICEF in 2018 onwards. 
However, more cholera surveillance data would be needed to test this. Cholera has occurred 
consistently in Yemen each week from 2017 to 2019 and this suggests cholera is becoming 
endemic.  
 

The forecast models used in the Weekly Rainfall Assessments were analysed by comparing them 
to satellite observation data, due to the lack of in-situ rain gauge data. Forecasts for light rain were, 
typically, within 11km of where light rain was observed. The forecasts for heavy rain differed in 
location, to the observation data, by at least 160km. These results are comparable to forecasts 
from other national weather centres. Rainfall forecasts were found to be weakly correlated with the 
weekly number of new cholera cases. The statistical modelling work suggested that targeted 
interventions based on the rainfall forecasts may have reduced the number of cholera cases, 
however more data would be needed to validate this.  

7.2 Introduction to Recommendations 

The evaluation of UNICEF’s response to Yemen’s cholera outbreaks in 2016 and 2017 suggests 
that timely control measures could have limited its spread. Given the prevailing risk factors and 
vulnerabilities in Yemen and the ongoing cholera outbreak, it describes a system-wide lack of 
anticipation and preparation for a major epidemic, which left UNICEF and other actors ‘chasing the 
epidemic’. Getting ahead of the epidemic curve, the report suggests, can make a substantial 
difference during an outbreak. The need for early detection and response to contain outbreaks is 
also recognised in Axis 1 of the GTFCC’s Roadmap to Ending Cholera, which calls for early 
surveillance systems (prepositioning and preparedness of WASH and health systems).  
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UNICEF’s approach to using information on cholera risk to target their interventions represents a 
novel approach within the field of cholera control. In the Disaster Risk Reduction (DRR) field, risk 
informed early action is a now well-known and sophisticated concept. It should be recognised 
however that its evolution has been a long journey which started with individual pilots implemented 
by the Red Cross, World Food Programme, Food and Agriculture Organisation and others. These 
tested the theory that acting ahead of a climatological hazard (which is forecast to have high 
impacts) could save more lives and improve the effectiveness of interventions. Events like the Red 
Cross’ Global and Regional Dialogue Platforms were (and still are) used to raise awareness of 
early action within the wider DRR community, share learning from pilots and to encourage 
discourse and ideas that could enhance the approach. Eventually, standardised methodologies 
and frameworks have been developed which provide a step-by-step approach to implementing an 
early action plan. In parallel, technological developments and financing mechanisms have 
emerged which act as enablers for practitioners to act ahead of a hazard.  

It can be argued that the use of forecasts and cholera risk information in Yemen represents one of 
the first pilots/trials of their use and that the general concept of using risk information to inform 
cholera response is in its infancy. The results of the validation work described in this report are 
encouraging and indicate that the CRM and rainfall forecasts can add value to cholera decision 
making where the context or use case is similar to Yemen (i.e. cholera control and prevention 
interventions are already underway). Whilst both the CRM and rainfall forecasts have limitations, 
these should not discourage their uptake as waiting for the perfect tool risks missing opportunities 
to reduce the impact caused by cholera. 

The recommendations drawn from this assessment are presented in the following way: 

 Recommended use of CRM and rainfall forecasts in Yemen 
 Recommended use of the CRM and rainfall forecasts elsewhere 
 The need for further pilots 
 Encouraging discourse and learning lessons from pilots 
 Opportunities to enhance the CRM and rainfall forecasts in the short-term (already in 

progress or straightforward to implement 
 Opportunities to enhance the CRM and rainfall forecasts in the medium to longer term 
 Recommendations on data availability to support tools such as the CRM 

For all of these recommendations, a caveat could be made that there are still many questions about 
the way that these tools should be applied which can only really be answered through more detailed 
engagement with potential users. The COVID pandemic has restricted routine exploration with 
users in Yemen during the course of this project. 

7.3 Recommended use of the CRM in Yemen 

Currently UNICEF are not using the CRM in their cholera decision making and have not been doing 
so for over a year and a half. During brief interactions with the team, the main reason for this was 
scepticism about its predictions and finding it hard to interpret.   In light of the validation work 
undertaken for this Case Study, UF should demonstrate to UNICEF and partners how use of the 
CRM can add value to their planning and preparedness activity and how it complements the SOPS 
already in place for using rainfall data.  The development of training materials on the CRM which 
describe the genesis and evidence base for the model, summarise validation work undertaken on 
its outputs and make it easy for users to understand its outputs, will facilitate uptake for users in 
Yemen (and elsewhere).  Additionally, further analysis of the CRM’s performance should be 
undertaken with new epidemiological data sets which have been obtained from UNICEF which 
provide more granular case data.  

7.4 Recommended use of rainfall forecasts in Yemen 
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The rainfall assessment product which is provided to UNICEF each week needs to be reviewed 
and streamlined due to only the narrative summary of weather and rainfall by district tables being 
used. A review of the threshold used by UNICEF to “Take action” should also be undertaken to 
identify a threshold which means the forecast models have greater skill, following the performance 
analysis of the models used in the forecasts in this study. 
 
Due to the absence of any other forecasts in the country, the rainfall assessments are used more 
widely than for just cholera decision-making (e.g. flood forecasting and camp management). As 
the product was not originally designed with this in mind, the suitability of the rainfall assessment 
in its current form (and considering the validation work undertaken), is under consideration with 
UNICEF. The outcome of these discussions will inform the details that will be presented in the 
forecasts. A way to secure the long-term funding for the ongoing provision of the rainfall 
assessments (once their new content and format has been agreed) is also recommended until the 
Yemen Met Service can resume issuing forecasts itself. 
 
Longer-range information on the rainy season ahead, in terms of its likely onset and intensity could 
also be of use to UNICEF for longer term planning and preparation and it is recommended that the 
availability of seasonal forecasts for Yemen is explored with the World Meteorological Organization 
(WMO). 

7.5 Recommended use of the CRM elsewhere 

In areas where epidemic cholera is a frequent occurrence, preventative measures will already be 
underway in anticipation of an outbreak (often on a seasonal basis).  In these contexts, the CRM 
and rainfall forecasts can be used to inform planning and preparation activities.  The cholera risk 
information provided by the CRM should also be used to intensify early control measures such as 
surveillance and reporting, strengthening healthcare systems and community engagement.  Using 
cholera risk information in this way can help to flatten the epidemic curve 

It should be recognised that willingness of UNICEF to use risk information to intensify interventions 
was born out of the scale of the epidemic Yemen was experiencing; any information which could 
be used to prioritise control activity (that was better than taking chances) was helpful. In other 
contexts where the nature of the epidemic is not as severe, there may be less willingness to use 
risk information to target control measures. The way the CRM and rainfall forecasts are used 
alongside other tools and models would therefore need careful consideration with potential users.  
Funding to encourage early action based on risk information could also help to overcome financial 
barriers to acting before an epidemic is declared.  

The range of interventions that are taken for cholera treatment, control and prevention, whilst 
adapted to local contexts, are broadly similar around the world. It is therefore recommended that 
these are explored with a range of operational and strategic cholera stakeholders so that they can 
be used as a basis for SOPs if and when further pilots take place.  

A joint OCHA/GTFCC/FCDO workshop took place in Spring 2021 to share the concept of early 
action for cholera with a wide range of stakeholders. One of the three break-out sessions provided 
an opportunity to initially explore which actions/interventions had the best potential to be informed 
by risk information. Even though participants came from varying backgrounds and operated in 
different contexts, there was a reassuring level of consistency in the actions they felt could be 
brought forward if cholera risk data were available to them.  

7.6 Recommended use of the rainfall forecasts elsewhere 

When used alongside the CRM, forecasts can provide another layer of risk information and provide 
a higher level of confidence to a potential user due to their dynamic nature (the forecasts are 
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updated hourly and short range forecasts for days to a week ahead are associated with higher 
accuracy).   

There may be localised differences in how rainfall and cholera are connected. Understanding the 
nature of this relationship, by area, in a country would indicate where use of rainfall forecasts has 
most value in cholera decision making. A weather sensitivity analysis (which can assess the 
relationship between rainfall and cholera, by area) could be used to establish this. 
 
If forecasts are used, the spatial accuracy of forecasts versus the size of administrative areas for 
which decisions are taken would need to be considered in individual use cases, as this could 
represent a limitation to their application in smaller countries. Thresholds for action would need to 
be considered (as in Yemen).  
 
Short-range forecast products to support cholera response should be co-produced between the 
user (e.g. UNICEF) and the National Meteorological Service (NMS) of the country in question. If 
the NMS is not functioning (as is the case in Yemen) or is unable to provide the required 
information, the local regional centre, through the WMO cascade system might be able to assist. 
Failing that any global producing centre such as the Met Office can work with the user to design a 
rainfall forecast service. A full understanding of needs and potential uses of these forecasts is 
required at this stage to ensure the forecast is suitable. 
 
As described in Section 2, numerous environmental factors are associated with cholera including 
temperature, relative humidity, sea surface temperature and social risk factors (e.g. sanitation 
conditions) so there should be caution in using rainfall alone as a determinant of cholera. Rather, 
short-range rainfall forecasts should be used alongside tools such as the CRM.  
 
Longer-range weather forecasts may also be valuable in preparing for cholera response.   Rainy 
seasons are thought to amplify outbreaks either through contamination of surface water and open 
sources or through population movements related to the rains (evaluation of UNICEF cholera 
response 2018).   Outlooks for the upcoming rainy seasons are developed at a series of Regional 
Climate Outlook Forums (COFs) around the world (coordinated by the WMO). Where they are 
functioning, the COFs also provide impact assessments though collaborative workshops with 
regional personnel from a range of institutes and agencies.  The seasonal forecasts give a 
likelihood prediction of whether the month will be above or below average (precipitation). The exact 
timing of the onset of a rainy season may be inferred from these, but due to the probabilistic nature 
of seasonal forecasts, there will be a large uncertainty in these predictions. The appetite for 
inclusion of cholera stakeholders in these fora should be assessed.   Furthermore, Moore et al. 
(2017) suggest that there may be a link between El Niño and the coastal environmental conditions 
that lead to cholera, in Africa. Further analysis would be required to determine whether the impact 
of El Niño, and other inter-annual climate events, is observed on cholera outbreaks elsewhere in 
the world, including Yemen. If a correlation is found this could provide an earlier warning for the 
purposes of even longer-term strategic planning. 

The diagram below summarises recommendations on how the CRM and rainfall forecasts could 
be used now to inform cholera response. It is likely that interventions profiled would change 
according to practitioner and context in which they are applied, so it is recommended this approach 
is consulted on with a range of cholera stakeholders.  
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Figure 7a: Proposed use of the CRM and rainfall forecasts to inform cholera decision making and the 
impact this can have on the epidemic curve.   

 
 
7.7 The need for further pilots using risk information to inform cholera response 
 

For those unaccustomed to the anticipatory action approach, risk informing tools like the CRM 
and rainfall forecasts may be hard to value within a more generalised response framework; 
further pilots are recommended to inform the evidence-base for the merit of such tools. 

Yemen is, so far, one of the only examples of using risk information in decision making around 
cholera (and this was predominantly based on using the rainfall forecasts). Whilst it provides a 
useful basis for discussion, more examples of use of the information in practice are required to 
shape this approach. 

The design of these pilots could be informed by the Met Office’s People Led Services Approach 
(PLSA). This was developed in recognition that successful early action can only be achieved 
through structured engagement between the providers of risk information and the users.  Working 
together, they can co-produce a process which pulls risk information through into action.  The PLSA 
is based on (and advances) the Met Office’s Impact Based Forecasting approach and draws on 
best practice of using risk information from the UK and around the world. The PLSA also 
compliments the Red Cross Climate Centre’s Trigger Methodology for Forecast Based Financing.  
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Figure 7b: The Met Office’s People Led Service Approach: Ensuring science is pulled through to action. 

Whilst primarily used in DRR and humanitarian contexts, we recommend the approach is also 
appropriate in the cholera context, since the elements involved are similar. If the approach was 
followed to inform the design any pilots which take place, the questions in Box 7 could be 
considered. 

A workshop (described in 7.5) took place in April 2021.  Hosted by UN OCHA, REAP, FCDO and 
the GTFCC, the concept and coordination of the workshop drew substantially on the experiences 
and lessons gained from this Yemen Early-action for Cholera pilot.  The objectives of the workshop 
were to raise awareness of the concept of early action for cholera and to explore how the CERF 
fund could be used to support further testing of this.  There was a general sense of openness (from 
the wide range of stakeholders participating) that using risk information could represent a way to 
reduce the cholera burden during an epidemic. It is essential however that the concept of 
anticipatory action in the cholera domain is not seen to obviate or undermine the need for longer 
term investment in WASH and health infrastructure, as described in the GTFCC’s Roadmap for 
Ending Cholera. 
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OCHA have now committed up to $10 million to working with the GTFCC to supporting pilots which 
will test how using risk information can support earlier response.   These pilots could provide an 
opportunity to take forward some of the recommendations presented in this case study. 

  

  Box 7: Questions that could inform the structure of the pilot design. 

7.8 Encouraging discourse and lesson sharing from pilots 

If pilots which test the use of risk information to inform cholera go ahead, it is recommended that 
opportunities to share insight and experience from these are used to build awareness and 
momentum around the approach (following the trajectory of early action in the DRR context). There 
is known to be scepticism in the cholera community about the use of environmental data to inform 
cholera risk and this could come to represent a significant barrier to uptake. Discourse could be 
used to explore this and evidence from pilots may go some way in helping to overcome this.  
 
Opportunities for such discourse could include: 
 
Anticipatory Action Fora 
 

- Risk Informed Early Action Partnership (REAP): REAP aims to encourage a systemic 
shift towards acting early. Whilst primarily focused on earlier emergency response, REAP 
has now formed a working group on health and cholera can be included in this. 

1. Understand impacts: Status of cholera in the country; seasonality of cholera or monthly 
distribution; relationship between climatic parameters and cholera bacteria in human 
population.  

 
2. Identify actions in anticipatory space: How is cholera response organised and coordinated; 

what are the cholera interventions that are generally taken, by whom; how are they triggered; 
what is the lead time between deciding to take action and triggering action; what is the 
planning and preparation process for the interventions; how long does this take; what is the 
cost of interventions and how are they funded; what are barriers to interventions; what are the 
local considerations (cultural/social/political/economic); which interventions are considered 
“no regrets”; what is the impact of ‘acting in vain’. 
 

3. Assess data: Availability of epi data/WASH data/population data; how is this currently used 
to inform interventions; how are interventions paid for; are there cholera tools/models being 
used already/what evaluations have been undertaken on cholera response/what lessons have 
been learned; does the CRM cover the country in question; what rainfall forecast data is 
available from national meteorology service – and what is their capacity for delivering tailored 
rainfall products; are there known barriers up uptake of information. 

 
4. Develop service: Identify where risk information could inform and enhance cholera decision 

making; develop SOPs; explore what the financing considerations around earlier 
response/action; agree how the effectiveness of acting early can be measured – what is the 
impact on the curve of the epidemic; what are the consequences of acting earlier and 
(potentially) flattering the curve with regards to fatigue/scepticism.  Ways to evaluate risk 
based interventions and the performance of the tools used to inform these should be directly 
informed by the availability of data identified in step 3.   
 

5. Communicate: Who will risk information be used by; what format should information be 
provided in (email, web portal etc); ensure training materials and user guides are available; 
develop service level agreements which include feedback mechanisms 

 
6. Sustain and improve: Evaluate and adapt approach based on learnings; knowledge 

management. The target being to avoid cholera becoming endemic in that particular region.  
 



 
 

Page 59 of 100 
© Crown copyright 2021 Met Office 

OFFICIAL 

- Dialogue Platforms (Global and Regional): Set up by the Red Cross to share best 
practice of pilots for forecast based early action for humanitarian response, these are now 
widely attended and consider a range of issues around anticipatory action. There may also 
be scope to include a health session in the Red Cross’ Dialogue Platforms to consider early 
action for diseases or health conditions which have a predictable environmental element 
(e.g. Dengue fever, cholera, heat stress and others). 

- Understanding Risk is a global community of experts and practitioners with interests in 
the field of disaster risk identification, specifically risk assessments and risk 
communication. Annual events are held to bring the community together. 

 
Cholera/health specific fora: 
 

- A working group on the use of climate and weather information for predicting and 
preparing for cholera and vector-borne diseases has already been established by the 
WMO, WHO and others to discuss scientific developments in this area. 

- Joint Operational Framework (JOF) set up between WASH and Health Clusters of the 
WHO to improve the coordinated and integrated preparedness and response to 
cholera in countries in humanitarian crisis. The JOF was informed by findings from a 
joint global health and global WASH review and was created in consultation with partners 
working on the cholera response across different humanitarian contexts. It promotes a set 
of key tasks in the critical areas of leadership, coordination and integrated response to 
increase the efficiency and effectiveness of the cholera preparedness and response efforts. 

- GTFCC related fora.  The pilots will be co-designed between OCHA and the GTFCC and 
there will therefore be opportunities to share insight from these within the Task Force. If 
the pilots can demonstrate the value of using risk-data there may also be scope to explore 
how its use could also inform the implementation of the Roadmap for Ending Cholera.  It 
may be particularly relevant to the ‘Early Detection and Surveillance’ pillar of the strategy. 

7.9 Opportunities to enhance the CRM and rainfall forecasts in the short-term (already in 
progress or straightforward to implement) 

Further pilots and associated discourse/learnings will help to develop and enhance the 
approach/methodology to early action in cholera response.  There are also specific 
recommendations which could enhance the CRM and rainfall assessment tools themselves.  
Recommendations are categorised as either scientific or technical development where discreet 
activity can enhance the tools or ‘research’ where further insight or understanding is required. 

The short/medium development activity recommendations include:  

7.9.1 Explore if forecast rainfall information can be used to introduce 1 week lead-time into 
the CRM (scientific development) 

The operational CRM uses historic rainfall data sets from the NASA GPM and is valid 4 weeks 
from issue. The potential enhanced predictability of the CRM would gain by ingesting forecast data 
needs further investigation by UF, but it is proposed that this could give the CRM a 1 week lead-
time into its 4 week validity period. 
 

Relevance of recommendation in Yemen: Currently UNICEF are not using the CRM and have 
not been doing so for over a year and a half.  The reasons for this were described as finding it hard 
to understand and being sceptical about its predictions. It is hoped that by sharing this validation 
work with UNICEF Yemen, their confidence in the CRM and appetite to use it will increase so the 
extended lead time (if this is achieved through forecast data ingestion) could be helpful.  

Relevance of recommendation elsewhere: Longer lead times are likely to be more helpful / 
relevant to potential users of the CRM. 
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7.9.2. Improving access to the CRM (technical development) 

Output from the CRM is currently displayed in a PDF document which is sent as an attachment to 
an email at the start of each week. Accessing the CRM through a web-portal (which is in 
development) will improve access to the tool and enable users to interact with its outputs more 
flexibly. The web-based tool could also act as a dashboard which enables decision makers to see 
an overview of cholera risk and a regional/global level to identify potential hotspots. Development 
of a smartphone app (only for Android devices at present) to display cholera risk assessments is 
also underway.  

Relevance of recommendation in Yemen: If UNICEF start to use the CRM again, then accessing 
it online maybe useful.  Confirmation of this would need to be sought since there are likely to be 
issues with the internet in Yemen, which may make it preferable to retain capability to provide a 
PDF which can be downloaded, printed, and discussed. 

Relevance of recommendation elsewhere: Providing a range of options for how the CRM is 
accessed (email, web, app) will help to tailor the service to the needs of individual users. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 7b: CRM output on web-based portal (showing Yemen as an example) 

 

7.9.3 Inclusion of the CRM in inter-comparison study of cholera models (research) 

Identification of how the CRM compares with other cholera models will help practitioners to 
understand which tools are most appropriate for them in any given context. It is therefore 
recommended that the CRM is included in the cohort of models to be evaluated under the newly 
formed WHO Infections Disease (ID) modelling inter-comparison pilot study. This pilot study will 
independently evaluate multiple ID models using common, and agreed, metrics, including 
alternative cholera models, such as those of Medécins Sans Frontiers. The pilot emerged as an 
outcome of the WHO Expert Meeting on Infectious Disease Modelling in June 2020 and the terms 
of reference are being agreed at the time of writing.  

Relevance of recommendation in Yemen: Understanding how the CRM compares with other 
tools will enable UNICEF to identify how it can add value to the tools that are already (or could 
be) available to them.  

Relevance of recommendation elsewhere: Potential users would be able to identify the most 
appropriate tool to use to strengthen their decision making around cholera response. 

7.9.4 Development of communication materials  
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Insight from users suggest that output from the CRM can be hard to interpret and thereby 
represents a barrier to its use. This finding supports the ongoing development of user guides and 
training video(s) which will inform decision makers of the properties of the CRM and rainfall 
forecasts and how to interpret them. The limitations of tools will also be described. The 
communications materials would also set out an evidence-based justification for the use of 
environmental factors in modelling cholera (described in section 2.2). 

The way the CRM is used in individual contexts and by different types of stakeholders needs to 
be considered for each use case.  Decision support tools (like the example shown in Annex 11) 
could be used to structure this dialogue.  

Relevance of recommendation in Yemen:  UNICEF have suggested that understanding of the 
output of the CRM is hard to understand. Team members have changed since the service started 
being provided and handovers may not have taken place on the CRM which could explain why it 
has fallen out of use. Training materials and user guides which can be easily understood by new 
users may therefore encourage its uptake if confidence in the CRM is increased. 

Relevance of recommendation elsewhere: Training materials and user guides (which can be 
easily translated into different languages) would enable any new potential users to quickly learn 
about the limitations, benefits and how to use the tool. 

 

7.10 Enhancements to the CRM and rainfall forecasts in the medium to longer-term 

Whilst the CRM and rainfall forecasts are operationally ready in their current form and will be 
enhanced through the short- term recommendations described above, medium to longer term 
enhancements have the potential to improve confidence in the tools and enhance their usability.  

7.10.1 Undertake further analysis of CRM performance in Yemen using newly acquired 
data sets (research recommendation) 

More recently (after the analysis documented in this study had already been undertaken), UF 
was provided with data on water and sanitation, as well as epidemiological datasets on cholera 
cases at a district scale. This data should be interpreted and analysed for determining scale 
issues (i.e., what is the appropriate spatial and temporal scale at which CRM predictions are most 
valid?). A baseline study, similar to the one here, should then be designed to better understand 
the accuracy of the CRM at more local levels. 

Relevance of recommendation elsewhere: Undertaking further analysis in Yemen using richer 
spatial epi data would determine at what scale the CRM should best be used at.  

 

7.10.2 Validating the CRM through water sampling (scientific development) 

The ability to test water for the Vibrio Cholerae bacteria in areas where the CRM has predicted 
cholera could provide a ‘ground truthing’ of the model’s predictions and increase confidence in 
the tool’s accuracy.  A simple and cheap methodology for doing this in the field has been 
developed by University of Maryland (Dr Colwell) and is described in Annex 12. The idea of water 
sampling is important because it will provide further justification for anticipatory action and 
decision-making abilities for stakeholders. Development of a decision support system will be 
needed to assess susceptibility to outbreaks of cholera and to enable appropriate action once 
monitoring confirms the pathogenic bacteria is in a water system. 

Undertaking water sampling in areas where the CRM predicts a risk could enable alerts to be 
issued as soon as cholera bacteria is detected in the water.  This enhanced surveillance differs 
from traditional surveillance methods in which alerts are issued when cholera is confirmed in the 
human population (and at which point, avoidable transmission may have already occurred). 
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Research has been undertaken into doing this in Lake Tanganyika in East Africa with encouraging 
initial results (yet to be published so not referenced, Colwell et al, 2021). It is recommended that 
a further pilot (described in section 7.3.5) is used to test this in an operational context. 

Relevance of recommendation in Yemen: If UNICEF start to use the CRM again, undertaking 
water sampling could provide them with higher confidence cholera risk information which could 
strengthen their current cholera response strategies. 

Relevance of recommendation elsewhere: Confirmation of the presence of Vibrio 
Cholerae bacteria would help to provide greater confidence in cholera risk predictions and limit 
the chance of ‘acting in vain’ (where cholera risk is predicted to be high but actual cases don’t 
occur).  This maybe particularly relevant for users who are less willing to take ‘no regrets’ actions 
on the basis of predicted risk and require more certainty before planning/preparation activities 
and early response interventions are activated. 

  

7.10.3 Development of the Transmission Mode of the CRM (scientific development) 

It is suggested that continual cases of cholera seen in Yemen from 2017 onwards is an indication 
that the disease is becoming endemic in the country. This indicates that cholera will remain 
circulating in the human population in Yemen for some time.  An example can be drawn from 
Haiti where a cholera outbreak lasted for about 10 years. The Transmission mode of the CRM 
(which is more relevant for epidemic cholera) is currently in development at UF and Yemen 
provides a unique opportunity to validate this, using the three years of datasets that have been 
obtained. 

Relevance of recommendation in Yemen: Whilst the trigger mode of the CRM has been 
provided to UNCIEF in Yemen through this work, the transmission mode of the model may be 
more applicable for decision making in future. 

Relevance of recommendation elsewhere: Development of the trigger mode and validation of 
its accuracy would enable the CRM to be used in countries with endemic cholera. Once the model 
has been validated, it can be used in conjunction with the trigger module to provide assessment 
on “given trigger risk, X, the corresponding transmission risk is likely to Y.” 

7.10.4 Validation of the CRM in other areas and contexts (research) 

While the association of precipitation and temperature on cholera is established, thresholds on 
the degree of anomalous values of precipitation and temperature are expected to be a function 
of available water and sanitation infrastructure, as well as sociological perception of cholera 
disease in human population. It is also expected that some regions may be more resilient to an 
outbreak of cholera (due to existing behavioural norms - washing hands, boiling water etc). 
Therefore, it is suggested that the CRM should be validated in several regions where continuous 
time series of epidemiological data are available. This will shed further insights on region-wide 
impacts of temperature and precipitation on cholera.  As an example, UF and UN OCHA have 
attempted validation of the trigger module on sporadic epidemiological data, harvested from WHO 
reports.  .  

Relevance of recommendation in Yemen:   Continued analysis of the CRM’s performance in 
Yemen will indicate if it continues to be a tool which can add value to decision-making. 

Relevance of recommendation elsewhere:   Validation of the CRM in a range of countries 
affected by cholera will indicate where the model’s performance has the best potential to inform 
cholera response.  

7.10.5 Improved understanding of the influence of climate on cholera (research) 

Improving understanding of the impact that inter-annual climate events such as El Niño and other 
seasonal patterns may have on cholera could enable even earlier indications of where cholera 
may be an issue.   
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Relevance of recommendation in Yemen:  Paz (2019) has suggested that whilst the cause of 
the Yemeni cholera outbreak in 2017 is unclear, a combination of the impact of the strong El Niño 
of 2015-16 on cholera incidence in Somalia, followed by south-western winds over the Gulf of 
Aden throughout the summer of 2016, contributed to the disease spreading from the Horn of 
Africa to Yemen.  If further research finds a significant correlation between inter-annual events 
like El Niño and cholera, early predictions of El Niño would be relevant to UNICEF and could be 
used for longer-term decision planning and resource allocation. 

Relevance of recommendation elsewhere: Improved understanding of inter-annual events on 
cholera could inform whether predictions for such events would be relevant for cholera 
responders.  

7.11 Recommendations on data availability to support tools like the CRM 

7.11.1 A repository of cholera time series.  

Development of a dedicated repository of cholera time series in various parts of the globe is 
needed to understand patterns of emergence of this disease. Currently, WHO hosts a database 
of annual time series for various countries. However, such data are inadequate to provide 
sufficient confidence in the model and associated performance.  For example, an experiment was 
conducted using very limited reconstructed time series from WHO database of cholera cases in 
Zimbabwe. UF used this time series to explore CRM risk predictions but the outputs remained 
inconclusive due to a lack of reliable/consistent epidemiological datasets. The development of 
data mining tools and a GIS based repository for cholera datasets could enhance future validation 
work on the CRM (and similar tools).  

7.11.2 Assessment of intervention and mitigation activities  

Assessing the impact of intervention activities which are informed by risk based information on 
cholera was particularly challenging during this study.   The datasets on intervention and 
mitigation activities were not collected or routinely shared. Therefore, it is recommended that 
prototype reporting of ground intervention activities must be initiated once cholera risk is predicted 
to be high or if an outbreak is already occurring in communities. Data should be ideally be 
available in a GIS format and available at near real time in order to enable good analysis of the 
impact of acting earlier based on risk information.  This type of analysis could also inform the 
evaluation of OCHA’s pilots. 

7.12 Consultation on the Case Study Recommendations 

The recommendations described above regarding how the CRM and rainfall assessments could 
be used, are based on very limited insight from practitioners due to COVID and related factors. 
These will need to be further reviewed by practitioners in the cholera response community. It is 
therefore recommended that a consultation on the recommendations takes place with a 
representative group of operational and strategic practitioners. 

 
7.13 Conclusions 

Cholera represents an ongoing threat in areas where access to clean water and sanitation is poor 
(either due to poverty or natural or anthropogenic disasters) and environmental conditions favour 
growth and spread of the Vibrio Cholerae bacteria.  

The use of the CRM and rainfall assessments in Yemen helped UNICEF to target their cholera 
prevention interventions and a reduction in cholera cases was observed.  Whilst the drop in cases 
cannot be directly attributable to decisions that were informed by these tools, UNICEF’s approach 
represents a novel example of responding earlier to fight cholera than may otherwise have been 
possible.  
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Validation of these tools indicates that in areas where epidemic cholera is a frequent occurrence, 
and preventative measures are already underway, the CRM and rainfall forecasts can be used 
to inform planning and preparation activities.  The cholera risk information provided by the CRM 
can also be used to intensify early control measures such as surveillance and reporting, 
strengthening healthcare systems and community engagement.   
 
To assess the use of risk-based tools and the impact that their use has on cholera levels, further 
pilots which test their use are required. Raising awareness of these pilots, sharing learnings, and 
drawing on the wider field of anticipatory action could enable such risk-based approaches to 
develop and add value to cholera interventions. If it can be applied at scale it could become a 
valuable tool to realise elements of the GTFCC’s roadmap to end cholera by 2030 by “containing 
outbreaks—wherever they may occur—through early detection and rapid response”. 

7.13 Summary of recommendations  

The recommendations presented in this paper are summarised below.  Those shaded in green 
are already underway though the EACH project (ending in May 2021). 

Recommendation   Description  Objective  
Recommended continued use of the CRM and rainfall forecasts in Yemen 

 
Overcome barriers to 
uptake of CRM with 
UNICEF (see 7.3) 

 
Share validation work and 
provide UNICEF with user guide 
and training materials on the 
CRM (in progress through 
EACH project) 
 

 
 Enable team to 
understand why and 
how to use the CRM. 

 
Enhance use of rainfall 
forecasts (see 7.4) 
 

 
Share validation work with 
UNICEF and explore 
thresholds at which they take 
action. 

 
Explore how current weekly 
forecast can be reformatted to 
meet needs for cholera 
response and DRR purposes.  
Identify how ongoing 
operational costs of forecasts 
can be met when EACH has 
finished in May 2021 (in 
progress through EACH 
project). 
 

 
 Update weekly 
forecast so it can 
support cholera and 
DRR decision 
making and can 
continue once EACH 
has closed.  

Recommended continued use of the CRM and rainfall forecasts elsewhere 
  
Use of the CRM (see 7.5) 

 
Use the model to plan and 
prepare for response. 
 

 
Support planning and 
preparation and earlier 
control measures.  

 
Use of rainfall forecasts 
(see  7.6) 

 
Co-design of a forecast 
should take place between 
national meteorological 

 
 Use rainfall forecasts (in 
areas where there is a 
significant relationship 
between rainfall and 
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Recommendation   Description  Objective  
service and the cholera 
practitioner.  

cholera (alongside the 
CRM) to support earlier 
planning and control. 
 

The need for further pilots (see 7.7) 
 
 Run pilots which test use 
of CRM and rainfall 
forecasts in other 
contexts (see 7.7) 

 
Support further trials of the 
operational use of CRM and 
rainfall forecasts. Build strong 
evaluation metrics to assess 
value of acting/responding early 
into the design of these pilots.  

 

 
Test /refine the 
approach for use of 
these tools in cholera 
decision making.   

Encouraging discourse and learning lessons from pilots (see 7.8) 
 

Use relevant fora to further 
discourse on early action in 
cholera (see 7.8) 

 
Use Anticipatory Action and health 
fora to share insight and learnings 
from the pilots. 

 
Raise awareness of 
the use of risk-based 
tools to support early 
action for cholera.   
Encourage discourse, 
share best practice 
and build momentum 
for the concept.  
 

Opportunities to enhance the CRM and rainfall forecasts in the short-term (already in progress 
or straightforward to implement) (see 7.9) 

 
Integrate rainfall forecast 
data into the CRM (see 
7.9.1) 

 

 
Ingesting rainfall forecast data 
sets into the CRM has the 
potential to introduce a lead-
time of 1 week to when the 
model is valid, which would still 
be a 4-week period, i.e. the 
model would be valid for a 
period of 4 weeks, from 1 week 
after it is issued. 
 

 
 Introducing a lead-
time of 1 week to the 
CRM’s validity period 
would give users more 
time to plan/prepare 
their cholera response. 

 
Development of web-based 
hub for cholera (see 7.9.2) 

 
  

 
Development of a web-based 
platform and an app will mean 
users can access CRM data at 
any time, instead of waiting for 
a weekly email, containing the 
information in a PDF 
(underway: web-EACH, app- 
NASA). 

 

 
 Make it easier to 
access cholera risk 
information from the 
CRM. 

 
Inclusion of CRM in an inter-
comparison study of cholera 
models (see 7.9.3) 

 
A WHO infectious disease 
modelling inter-comparison 
study is being set up to look at 
available cholera models and 

 
Help users to 
understand where the 
CRM complements 
and adds value to 
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Recommendation   Description  Objective  
the CRM will be included in 
this.  
It is recommended that the 
needs of cholera response 
practitioners help to inform and 
shape this study. 

 

other cholera models 
available to them. 

 
Development of 
communications materials 
(see 7.9.4) 

 
 

 
User guides and training 
materials will be developed 
which explain the evolution of 
the CRM and how to interpret 
and apply its output (underway 
EACH). 
 

 
 Enable any user of the 
CRM to be able to 
understand how to use 
it without face-to-face 
training or handovers. 

Opportunities to enhance the CRM and rainfall forecasts in the medium-longer term (see 
7.10) 

 
Further analysis of the 
CRM in Yemen (see 
7.10.1) 

 
Using more granular data that 
has recently been provided by 
UNCIEF, reanalyse the CRM’s 
accuracy. 
 

 
 Improve understanding 
of the scale the CRM 
should be used at. 

 
Validation of the CRM 
through performing water-
sampling for cholera bacteria 
(see 7.10.2) 

 
A simple and cheap method of 
testing water for the Vibrio 
Cholerae bacteria in the water 
of areas predicted to be high 
risk has been developed. It is 
recommended that this is 
undertaken when the CRM is 
used to inform cholera decision 
making.  
 

 
Improve confidence in 
the CRM’s predictions. 

 
Development of the 
Transmission mode of the 
CRM (see 7.10.3) 

 
Understand more about 
anomalous values of rainfall 
and temperature and available 
water and sanitation 
infrastructure and social 
perception of cholera to inform 
development of trigger mode of 
CRM. Validate the CRM in 
regions where this data (and 
continual times-series of 
cholera data) is available. 
 

 
 Providing a cholera-risk 
tool for areas with 
endemic cholera which 
provides information on 
how the disease will 
spread in the 
population. 

 

Further validation work   
(see 7.10.4) 
 

 
Validation in several regions 
where there is continuous time 
series of epi data. 

 
 Improve understanding 
of the  impacts of 
temperature and 
precipitation on cholera. 
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Recommendation   Description  Objective  
Improving understanding of 
climate events and cholera 
(see 7.10.5) 

Look at inter-annual climate 
events such as El Niño and 
other seasonal patterns may 
have on cholera. 
 

Understand if there is 
scope to provide longer-
range (low confidence) 
cholera risk information. 

Recommendations on data availability to support tools such as the CRM (see 7.11) 
 
Development of a 
repository of cholera time-
series data (see 7.11.1) 

 
Access to epi data is 
challenging but is crucial to 
understanding cholera. A 
dedicated repository would 
enhance access to data. 

 
Improving access to 
epi data on cholera as 
this will enhance the 
development of tools 
like the CRM to 
enhance the ability 
and to validate their 
accuracy. 
 

 
Assessment of cholera 
intervention and mitigation 
activities (see 7.11.2) 

 
Datasets on cholera 
intervention activities are not 
routinely collected or shared so 
assessing the impact of these 
on cholera rates is challenging 
and makes the case for taking 
risk-informed action hard to 
establish. 

 
Enabling assessment 
of the impact of risk-
based interventions vs 
non risk based 
interventions to build 
the evidence base for 
early action for 
cholera. 
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ANNEXES 
 
 
Annex 1:  CRM report for Yemen from 11 January 2021 
 

 

 

 

Annex 2: Rainfall forecasts for Yemen 
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Annex 3:  UNICEF Case Study on use of CRM and rainfall forecasts 
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Annex 4: Details on formulas and additional methodology for validation of CRM  

The purpose of this effort is the use the existing model (without any improvements) and validate it 
using Yemen epidemiological data. Although the TM has been validated using historical data from 
Sudan, Bangladesh, Mozambique, Algeria, Cameroon, Haiti, and other parts of the world, Yemen 
provides a unique near real time opportunity to examine the validity of the trigger module of the 
CRM (Jutla et al., 2013; Jutla et al., 2015). Current version of CRM was developed with the purpose 
to provide the longest possible prediction lead time. This model was originally developed using 
cholera data collected from British India period and subsequently validated at several other 
location. In our previous analysis and published study (Jutla et al., 2013), we have reported “odds 
of occurrence of the disease during above and below normal rainfall and following the months of 
above average air temperature at the nine locations”. This analysis formed the key basis for 
development of the model for assessment of risk for following four weeks from the time the values 
of risk are computed. Subsequently, we tested our hypothesis on several location in the world. For 
example Figure 6 in the study published in PLOS (Jutla et al., 2015), shows that the hypothesis 
was true for several locations in Africa. We then used this hypothesis in Nepal, Sudan, Haiti, 
Mozambique and found it to be valid there. Hence, we converted it to a working model which was 
then used at locations such as Nepal (Khan et al., 2018a) and Haiti (Huq et al., 2017a) on a 
retrospective basis. The model appears to capture the trigger of cholera in those locations and 
hence the same model was used for Yemen. CRM is a hypothesis driven model and hence it does 
not require calibration unlike traditional disease simulation models.  

There is an opportunity to check model forecast on 1, 2, 3 weekly basis, however, this is beyond 
the scope of current work. However, during assimilation of Met Office precipitation data into the 
modeling schema, such understanding will provide further insights on what to do with short term 
cholera risk. The intervention strategies for a short term (such as weekly scale) are going to be 
very different that the long term (monthly to seasonal). The current scope is to validate the model 
outputs in its current form.  

The ideal version of prediction system has eight different routine. Figure A4a (below) shows basic 
structure of the model. The prediction system starts with identification of major disaster (man-made 
or natural) which is then fed to hydrological and climatological routine where large scale 
assessment of regional conditions supporting vibrios is conducted. Thereafter, environmental 
routine makes an evaluation on possible locations of the vibrios given hydroclimatological 
conditions. Vibrio survival routine was developed using about 40 years of data knowledge from 
University of Maryland. This is in form of a lookup table as a function of temperature and survival 
of vibrios under those conditions (Huq et al., 2005a). The WASH routine implies availability of safe 
water and sanitation infrastructure at the time prior and after disaster, where such information is 
routed to population routine. Population routine implies density of humans and locations of 
settlements in a region. This dataset is derived from LandScan data managed by Oak Ridge 
National Lab in the USA. Water security routine has information on where and when any 
intervention is being done so that outbreak of cholera can be stopped. Finally, our in-house 
developed algorithm combines the entire information and produces a risk value.  The advantage 
of using risk values instead of the actual case (prevalence or incidence) values is that the algorithm 
becomes independent from the epidemiological data requirements. In other words, the algorithm 
do not require epidemiological data to produce the risk values. However, we do validate our model 
outputs once the epidemiological data becomes available.  
 



 
 

Page 79 of 100 
© Crown copyright 2021 Met Office 

OFFICIAL 

 

Figure A4a: Schematics of cholera prediction system 

However, different regions will have different datasets available, therefore, depending on 
availability of data we will modify the utility of a particular routine. For example, in Yemen, 
information on water security, and WASH routines are were not used since such data are not 
available.  

The analysis was started with the entire datasets and then continued to separately to all three years 
(2017, 2018 and 2019). The individual year analysis was conducted to identify any changes in 
dynamics of cholera in the region. A separate year wise analysis may provide an indication as to 
whether cholera has transitioned from epidemic to endemic modes in the country.    

Pearson correlation coefficients (including 95% confidence) were computed between CRM risk 
model output and epidemiological time series of cholera cases. The analysis was conducted in the 
following way (for each governorate): Obtain weekly cholera risk values for all the pixels in a 
governorate from 2017 to 2019.  

 Take an average of the risk value to develop one time series for a governorate.  
 Correlate Week 1 risk value of CRM with total number of cholera cases in the next four 

weeks (week 1 to week 4). Correlate Week 2 value of CRM with average of week 2 to week 
5 values of cholera cases. (Sample plot between cholera cases and CRM risk values is 
shown in Figure A4b). 

 Statistical significance was computed at 95% confidence interval. Details on Pearson 
correlation coefficient and associated significance here 
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient)  
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Figure A4b: Weekly correlation between risk scores and cholera cases in Al-Hudaydah from 2017-2019. 

Pearson correlation coefficient “measures linear correlation between two variables X and Y. It has 
a value between +1 and −1. A value of +1 is total positive linear correlation, 0 is no linear 
correlation, and −1 is total negative linear correlation.” 
(https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). This is a parametric value of 
association between two variables. The standard student t-test 
(https://en.wikipedia.org/wiki/Student%27s_t-test) was used to determine statistical significance of 
the correlation values and has been used by scientists all over the world for over several decades. 
As a complementary analysis, we have used a non-parametric Kendall tau rank correlation 
coefficient which is a statistic “used to measure the ordinal association between two measured 
quantities” (https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient).  The purpose here 
is to determine if CRM model outputs are statistically related to epidemiological data. If these are, 
then we deem that the model is performing satisfactorily and will stop further analysis.  

CRM uses daily rainfall data obtained from the National Aeronautics and Space Administration 
(NASA). Rainfall data, at a resolution of 0.25oX0.25o from the Tropical Rainfall Measuring Mission 
(TRMM), was employed to compute the long-term average (four weekly average of rainfall). Daily 
rainfall data at a spatial resolution of 0.1oX0.1o from the Global Precipitation Mission (GPM 1998-
2020) was averaged over four week time scale. Following procedure was followed:  

1. Obtain long term average (1998-2018), on four week scale at governorate level, from 
TRMM.  

2. Obtain four week precipitation averaged over a governorate for a particular four weeks in 
question. 

3. Subtract step 2 from step 1 to get a four weekly deviation, or, 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 =

𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑣𝑎𝑙𝑢𝑒 − 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒                  

Daily air temperature data on the surface, at a spatial resolution of 0.5oX0.625o, were obtained 
from NASA's Modern-Era Retrospective analysis Research and Application, Version 2 (NASA-
MERRA 2) (hydrological and climatological routine). A similar methodology to compute deviations 
from long term averages was used. LandScan population data at a spatial resolution of 1kmX1km 
from Oak Ridge National Laboratory were acquired and employed for this model (population 
routine). The model output was resampled at 0.1oX0.1o (native resolution to GPM data) and is valid 
for the next four weeks(Anwar Huq et al., 2017a; Antarpreet Jutla et al., 2015). Weighted raster 
overlay algorithm (Andersson & Mitchell, 2006) was used to compute risk maps for cholera. 
Weighted raster overlay is a technique for applying a common measurement scale of values to 
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diverse and dissimilar inputs to create an integrated output with attributable outcomes (e.g., high 
risk to low risk). A population density layer along with two month’s lagged monthly mean air 
temperature anomaly and one month lagged monthly total precipitation anomaly layers were used 
to produce the hydroclimatic risk map for likelihood of occurrence of cholera. Thereafter, 
information on regional water resources (WASH infrastructure) was added to the risk assessment. 
When applying the weighted raster overlay algorithm (Andersson & Mitchell, 2006), all input raster 
layers must have an assigned integer value, or it must be converted to an integer. Each input raster 
is assigned a new value based on an evaluation scale which is shown in our previously published 
manuscript (Rakibul Khan et al., 2018a). The new values were deemed to be “reclassification” of the 
original input raster values. The evaluation scale was determined based on the range of all raster 
layers for the variable under consideration. For example, the air temperature anomaly evaluation 
scale was determined based on maximum and minimum values of the raster layers for all May, 
June, July anomalies.  Every input raster was weighted according to importance (in terms of 
percent influence) and was converted to relative percentage; total being 100. Changing evaluation 
scales or percent influence can change the results in the final risk map. Different weights were 
computed while determining risk of cholera under various scenarios e.g. hydroclimatic and WASH 
based risk assessment.  The relative weight of each variable was assigned a risk level, e.g. very 
high, high, moderate high, low, or very low. Hydroclimatological departure from normal conditions 
was assumed to the strongest contributor to risk of cholera. Using each pair of precipitation and 
temperature anomalies, along with population density, three composite maps of spatial cholera risk 
for July, August and September were generated. Figure A4c shows the flowchart for 
implementation of the weighted raster overlay algorithm. The blue dotted box at the left represents 
layers used to generate the hydro-climatic risk map and the solid red box incorporates the WASH 
infrastructure into the risk computation. Figure 5b shows sample risk scores and cholera time series 
for one of the governorates. A sample temperature and preciptiation long term averages is shown 
in Appendix A.  

 

Figure A4c: Weighted raster overlay flow chart. The dotted box represents the layers used to generate 
hydroclimatic risk map and the solid box to incorporate water resources into the risk calculations. 
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Annex 5:  Limitations of satellite data 

A limitation of using the IMERG satellite product over Yemen is that the product will not be able to 
use precipitation gauges to assist in the bias correction process. This means that if there are biases 
between satellite coverage and true precipitation coverage it may not be possible to correct for 
these biases.  

A study of IMERG performance across the Kingdom of Saudi Arabia, which is on  Yemen’s 
Northern border, has found that the product performs well in detecting light rain (0-10 mm) 
precipitation owing to its 13-channel microwave imager and dual frequency precipitation radar  
(Mohammed et al. 2020). They also found that the detection errors in the product increased as the 
intensity of precipitation increased and that this error tended to come in the form of an 
underestimation by the satellite. A topographical analysis done in the same study finds that the 
IMERG product is more biased at higher altitudes (more than 1000 m). These results are presented 
in the context of other studies that have found IMERG products to have higher errors in 
mountainous and in coastal regions. A study by Prakash et al. 2018 found that there were increased 
errors and bias over mountainous regions in India.  Another study finds increased errors in both 
coastal and mountainous regions in Far-East Asia (Kim et al. 2017). Overall, Mohammed et al. 
2020 concluded that there is generally a low correlation coefficient between ground observation 
data and IMERG precipitation over Saudi Arabia. 

Although Yemen and Saudi Arabia do not share identical climatology, owing mainly to the 
Mediterranean influence on northern Saudi Arabia and the extent to which the ITCZ affects the 
regions differently, the study by Mohammed et al. 2020 highlights the limitations of validating 
forecasts using a satellite product alone. It is particularly important to recognise this as a limitation 
to this analysis given that the mountainous areas in the west of Yemen are the regions that 
experience the most precipitation but are also the most populated. 
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Annex 6: Further details of the contingency table analysis  
The classification of the satellite and forecast data into separate binary fields allows the 
categorisation of the data into 2 x 2 contingency tables. Each cell in the table, as illustrated in 
Figure A6a, represents one possible outcome from comparing the satellite to the forecast data. 

Dataset Satellite data above 

threshold 

Satellite data below 

threshold 

  

Precipitation 

forecast above 

threshold 

Hits (a) False Alarms (b) Forecast rate 

(a + b) / N 

Precipitation 

forecast below 

threshold 

Misses (c) Correct Rejections 

(d) 

c + d 

   Base rate 

(a + c) / N 

b + d N = a + b + c + d 

Figure A6a: Classification of cells in a 2 x 2 contingency table. 

Each day of the month was classified into one of the four contingency categories described above, 
so the total number of records, N, will correspond to the number of days in the selected month. For 
a day to be classified as a Hit, Miss or False Alarm day, it is not necessary for the comparison to 
be at the grid cell level in the satellite and precipitation Yemen domain. Each grid cell is compared 
for the same location in the satellite and precipitation field and it is a comparison of the precipitation 
events aggregated to the Yemen domain level. As a result, the contingency tables used in this 
report provide a preliminary investigation of the Yemen domain. However, they provide little 
information about the skill of the forecast compared to the satellite data at smaller spatial 
resolutions than that of the Yemen domain. 

Many statistics can be derived from a contingency table (see Jolliffe and Stephenson 2012). In this 
report, the base rate and forecast rate are used. The base rate is the proportion of events observed 
((a+c)/N, using the nomenclature defined), and the proportion of events forecast is called the 
forecast rate ( (a+b)/N). The ratio of the forecast rate to the base rate provides the frequency bias. 
A bias of one is obtained when the precipitation forecast rate is the same as the base rate, the 
forecast is then well calibrated. However, a bias of one may not give the best result, if the objective 
is to minimise the impact of the forecast on the users. This is especially the case if the economic 
or societal impact of a False Alarm is small compared to the impact of a Miss. In such a situation, 
users may tolerate more False Alarms compared to Misses and as a result a bias greater than one 
may be more acceptable from an impacts perspective. Care should be taken when considering the 
frequency bias in this analysis. Normally, a forecast bias occurs when there are systematic 
differences between forecasts and observations and the implication is that the forecasts tend to be 
too high or too low. However, in this analysis, ground observations are not available and satellite 
data are used as a proxy for these missing ground observations. However, the satellite data may 
themselves be biased compared to the unknown ground observation. As a result, any deviation of 
the frequency bias from the value of 1, cannot be solely attributed to error in the forecast. 

The proportion of Hits, Misses, False alarms and Correct Rejections for the 24-hour precipitation 
accumulation for day 2 (top row), day 3 (middle row) and day 6 (bottom row), from January 2017 
to August 2019 for the Yemen domain is shown in Figure 6b. The Figure shows the following: 

1. A clear seasonal cycle is noted: 
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a. Typically, between May and October the number of Hits and Correct Rejections is 
proportionally higher compared to November to April. 

b. Between November and March there are fewer satellite precipitation events 
(Misses + Hits - base rate) compared to the rest of the year. 

2. The accuracy of the GM day 3 forecasts for the 10 mm threshold generally exceed those 
of the day 6 GM forecasts, throughout the wet season. The day 2 forecasts from the CAM 
are generally more accurate in terms of the percentage of correct forecasts (number of Hits 
and Correct Rejections) than the day 3 GM forecasts. However, it is noticeable that the day 
2 forecasts have a higher percentage of Misses compared to the day 3 forecasts, which 
have a higher percentage of False Alarms. 

3. The accuracy of the GM forecasts improves over time for the period investigated here, 
especially between 2017 and 2018. This could be due to improvements in the model, but 
it is also possible that different weather processes could affect the region in 2017 compared 
to 2018 and 2019. However, the results from the CAM are more mixed, with some 
improvements in the CAM performance between 2017 and 2018, particularly in the first half 
of the year. However, the percentage of Hits and Correct Rejections falls for all months 
(except January and August) when 2018 is compared to 2019 

These results generally tie in with the known climatology of the region, which is influenced by the 
ITCZ and the RSCZ. The transition periods between the dry season (December to March) and the 
wet season (June to September) are the months of April/May and October/November.  In April 
2018 and 2019, the Hit rate across day 2, 3, and 6 exceeded 65 %, whereas the Hit rate for April 
2017, was low at approximately 20 % and 15 % for day 3 and 6 rising to 50 % for day 2. The 
difference in the April Hit rates could show the variable nature of the transition from the dry to the 
wet season with the transition from dry to wet season arriving later in 2017 compared to 2018 and 
2019. However, it may also show the improvements in the weather forecast over this period. 

The base rate looks at the proportion of precipitation events in the satellite data and will not be 
affected by forecast model updates. This data displays a similar pattern: higher base rates for April 
2018 and 2019 compared to April 2017. This suggests that the timing of the transition to wet season 
can be variable. Camacho et al. (2018) also observed a link between the start of the wet season 
and the outbreak of cholera waves. Therefore, the results will focus on the period April to 
November, which covers the transition to and from the wet season (Section 3.1). 

In the wet season, the proportion of Misses is large compared to the number of False Alarms for 
day 2 but for day 3 and day 6 the number Misses is small compared to the number of False Alarms. 
This could be attributed to the different forecast models, different thresholds, the re-gridding of the 
CAM forecast data to the coarser satellite resolution (Annex 5), or timing differences as the lead 
time, from when the forecast is issued to when it is valid, increases. The higher resolution of the 
CAM, compared to the GM, allows for improved modelling of convective precipitation, and 
combined with the better resolved topography due to the smaller grid cell size would suggest using 
a higher “take action” threshold compared to the GM. The threshold chosen for the “take action 
category” was 20 mm for day 1 and 2 compared to 10 mm for subsequent days. 

To allow for a comparison of the model data with the satellite data necessitated a re-gridding of the 
forecast data to that of the satellite data, as discussed in Annex 5. The grid resolution for the 
satellite data and the GM data were very similar. However, the resolution of the satellite data (11 
km) are approximately 3 times greater than that of the CAM model (4 km). The re-gridding will 
inevitably result in a smoothing of the forecast precipitation fields and this could explain the 
increase in the number of Misses (and decrease in False Alarms) observed compared to the GM 
forecasts. Ideally, in future work, the CAM should either be compared to satellite data at a similar 
resolution, or the 20 mm threshold adjusted to a lower threshold to take into consideration the 
spatial averaging that happened as part of the re-gridding. Hence, the interpretation of any results 
from this verification analysis from the CAM should be treated with caution, and further analysis 
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that investigates the sensitivity of the threshold to the re-gridding of the CAM data to the satellite 
scale should be undertaken prior to any analysis of the Day 2 forecasts. 

The next step is to analyse the monthly scatter plots of the daily counts of precipitation, where both 
the satellite and the forecast data have at least one grid cell “take action threshold”, for the Yemen 
domain. The 24-hour precipitation for day 3 and day 6 are shown in Figure A6b and Figure A6c, 
respectively. Daily data from different years are plotted using different shapes: 2019 with diamonds, 
2018 with squares, 2017 with circles. This is the equivalent of producing a scatter plot of the number 
of cells for the forecast and satellite data that have been classified as a Hit event. Counts reported 
in the satellite (forecast) data are not required to be in (or near) the same cell location in the forecast 
(satellite) data. The black dotted line represents the one-one correspondence line, which is where 
all the points would lie if the forecast data was in perfect agreement with the satellite data. 

May, for both day 3 and day 6 precipitation events, tends to be the most variable month across the 
wet season years, containing both the largest count of satellite precipitation grid squares and 
forecast grid squares, not necessarily on the same day, with values close to 3000 which is 
approximately 20% of the total grid cells in the Yemen domain. Across the early wet season months 
(April to July), the spread of the counts associated with the Hit category appears to be smaller in 
2017. As described earlier whether this is due to changes in the global model or different weather 
process affecting the Yemen region in 2017 compared to 2018 and 2019 cannot be ascertained 
from these data sources. For both day 3 and day 6, for the wet season months, there is a slight 
tendency for the forecast data to predict more precipitation events compared to the satellite data 
(more noticeable in August). 

Mohammed et al (2020), found that for precipitation events that exceeded 10 mm the satellite data 
underestimated the precipitation compared to observations. Given that there are no observations 
available for Yemen, the fact that the satellite data underestimates precipitation events compared 
to the forecast data (whilst not providing robust, statistical significant evidence) may suggest that 
at least a small component of the bias could be due to the satellite data under reporting precipitation 
events. 
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Figure A6b: Scatter plot of daily counts where both forecast and satellite data have cells above “active 
threshold” for day 3. Each point represents one day, and days in different years have different shapes (2017 
circle, 2018 square, 2019 diamond). The Yemen domain has 14 700 grid cells in total. 
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Figure A6c: Scatter plot of daily counts where both forecast and satellite data have cells above “active 
threshold” for day 6. Each point represents one day, and days in different years have different shapes (2017 
circle, 2018 square, 2019 diamond). The Yemen domain has 14 700 grid cells in total. 
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Annex 7: Calculation of Fractions Skill Score (FSS) 

The calculation of the FSS can be considered in three main steps:  

1. Re-grid the forecast model data, so that it is on the same spatial resolution as the satellite 
data, 

2. Convert both the satellite and forecast fields to binary data, 
3. Decide upon the extent of the spatial area around each grid cell. For each spatial area, 

calculate in both the satellite and forecast data the fraction of precipitation events, 
4. Calculation of the Fractions Skill Scores. 

To assess how similar the forecast and satellite fields are spatially, the Fractions Brier Score (FBS) 
was calculated. The FBS for a forecast that matches (in location) the satellite data perfectly is 0. 
However, the scores obtained for non-perfect forecasts are dependent on the frequency of the 
precipitation event. As a result, Roberts and Lean (2008) proposed deriving the Fractions Skill 
Score (FSS) from the FBS. A perfect forecast would have a FSS of 1; scores close to 0 imply very 
little, or no skill in the ability of the forecast to replicate the satellite fractions. 

One of the aims of this analysis is to investigate the extent of any spatial skill, not just at the grid 
cell level, but for a region surrounding the grid cell. Figure A7a is a schematic representation of the 
domain, the outer domain, and the location of a single grid cell (row=i, col=j). The domain 
represents the satellite and forecasts fields that were extracted for the Yemen domain as defined 
in Section 6.1. Every grid cell in the domain (represented by an x in Figure A7a), will have a value 
of either one or zero, depending on whether the rain amount was above a specified threshold or 
not. Values outside of the domain are assumed to have a value of 0 regardless of what was forecast 
or observed. Each grid cell within the domain has an associated neighbourhood. In the example in 
Figure A7a, the cell i,j (highlighted in yellow) has a neighbourhood consisting of a square made up 
of 25 grid cells (blue shaded cells), with the cell i,j located at the centre of the 5 x 5 grid square.  
Darker blue cells represent a rain event above the threshold, the fraction of rain events in the 
associated neighbourhood of cell i,j is 5/25 or 20 %. A field of precipitation fractions can be derived, 
if the proportion of precipitation events is calculated for each 5 x 5 neighbourhood that has a centre 
that falls within the domain.  Separate precipitation fractions fields were derived for the satellite and 
the forecast data. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x

i

x x x x x x x x x x x x x x x 0 0 0 
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,

j 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x X x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Figure A7a: Schematic scheme of outer domain, domain and neighbourhood. 

It is not necessary to restrict the neighbourhood to 5 x 5 grid squares, any grid square (provided 
its length is odd, so that the centre of the neighbourhood sits directly on a grid square in the domain) 
may be considered. Typically, as the size of the length of the grid square increases from 1 up to a 
maximum of twice the longest side of the domain minus 1, the FSS increases until it reaches an 
asymptote. If the number of events exceeding the threshold for the satellite and forecast fields are 
the same, this asymptote will have a value of 1. However, should a bias be present then the FSS 
will reach its asymptote at values less than one. It is not possible, using this method, to determine 
whether the bias is in the forecast data, the satellite data, or both. 

A plot of FSS plotted against the length of the neighbourhood square, can be used to identify the 
spatial scale at which the forecast becomes useful, FSSufc. Provided that the frequency of 
precipitation events in the domain is small (less than 20 %), the spatial scale at which FSS becomes 
greater than 0.5 can be used (Skok and Roberts 2016). Typically, when estimating the length of 
the neighbourhood that corresponds to the FSSufc, quantile thresholds are used to remove the 
influence of any precipitation bias between the forecast model and the observational data set used. 
However, the current analysis used fixed values, e.g. “take action” category (Section 6.1) as these 
could trigger (dependent on other non-meteorological risks) on the ground targeted action. Using 
absolute values allows for an assessment of the impact of False Alarms (when an event was 
forecast but didn’t occur) and Misses (when an event occurred but this was not forecast). 
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In this analysis any grid cell with its centre laying within the area shown in Figure A7a, is said to lie 
within the Yemen domain.  

The equations used in this study to calculate FSS: 

1. Use a threshold to convert precipitation fields, f, to binary fields 

𝐼 =
1 𝑓 ≥ 𝑞
0 𝑓 < 𝑞

 

2. Calculate the fraction of precipitation events, for each neighbourhood of size n, in the 
Yemen domain. 

𝑓(𝑛)( , ) =
1

𝑛
𝐼 𝑖 + 𝑘 − 1 −

𝑛 − 1

2
, 𝑗 + 𝑙 − 1 −

𝑛 − 1

2
 

3. Calculate the Fractions Brier Score 

FBS( ) =
1

N N
f(n)( , , ) − f(n)( , , )  

4. Calculate the low skill FBS 

FB𝑆( , ) =
1

𝑁 𝑁
𝑓(𝑛)( , , ) +

1

𝑁 𝑁
𝑓(𝑛)( , , ) 

5. Calculate the FSS 

𝐹𝑆𝑆( ) = 1 −
𝐹𝐵𝑆( )

𝐹𝐵𝑆( , )
 

 

Table 8 shows the number of days that were included in the FSS analysis, each month, after dry 
days were excluded. 

Obs  2017  2018  2019  
Neighbourhood 
size at which the 
specified bounds 
cross the FSSufc  

Count Count Count 

Apr  5 20 17 
May  19 19 16 
Jun  7 11 11 
Jul  21 28 17 
Aug  28 26 26 
Sep  21 15   
Oct  9 14   
Nov  4 9   
       

Table 8: The number of days included in the FSS analysis after dry days were excluded. 
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Annex 8: Further analysis of the FSS results 

Plots were produced for all months between April and November (the wet season), and the results 
are summarised in Table 9 and Table 10 for Day 3 and 6, respectively. When the average FSS 
curve does not cross the FSSufc line, which is when the forecast could be considered useful, this is 
represented by a dash in the tables. 

Table 9 and Table 10 show that the models have the greatest skill for July and August, i.e. they 
have the smallest neighbourhood sizes compared to the rest of the year. For day 3 accumulations, 
the forecasts become skilful when the monthly mean neighbourhood square has a length that is 
between 300 km (90 000 km2) and 800 km (640 000 km2). To put this into perspective, Yemen has 
an estimated area of approximately 427 900 km2.  However, this comparison should be treated 
cautiously as the land mass of Yemen does not conform to a square, unlike the domain of this 
analysis. The effect of the domain size on the results is discussed earlier. By day 6, August has 
the most consistent skill with the length ranging between 300 km and 650 km. The difference in 
length at which the upper and lower bounds cross the FSSufc for July and August varies between 
180 km and 1000 km. 

Day 3  2017    2018    2019    
Neigh
bourh
ood 
size at 
which 
the 
specif
ied 
bound
s 
cross 
the 
FSSufc  

upper 
95 % 
CI 
bound  

mean 
curve  

lower 
95 % 
CI  
bound  

upper 
95 % 
CI 
bound  

mean 
curve  

lower 
95 % 
CI 
bound  

upper 
95 % 
CI 
bound  

mean 
curve  

lower 
95 % 
CI  
bound  

Apr  29  
(319) 

101 
(1111) 

- 21  
(231)  

45 
(495)  

83  
(913) 

39  
(429)  

95 
(1045) 

-  

May   37 
(407)  

69  
(759)  

-  33  
(383)  

113 
(1243) 

-  35  
(385)  

55  
(605)  

121 
(1331)  

Jun  89 
(979)  

-  -  81 
(891)  

-  -  11 
(121)  

77 
(847)  

133 
(1463)  

Jul  29  
(319)  

75  
(825)  

-  19  
(209)  

31  
(341)  

47  
(517)  

21  
(231)  

41 
(451)  

69 
(759)  

Aug  33 
(363)  

49 
(539)  

71 
(781)  

19 
(209)  

35 
(385)  

65 
(715)  

41 
(451)  

57 
(627)  

81 
(891)  

Sep  -  -  -  71 
(781) 

-  -   -  -  - 

Oct  135 
(1485)  

-  -  9 
(99)  

27 
(297)  

61 
(671)  

 -  - -  

Nov  3 
(33)  

87 
(957)  

-  39 
(429)  

109 
(1199)  

-   - -  -  

                   
Table 9: The useful Fractions Skill Score neighbourhood size in grid cells (km in brackets) for the mean 
curve, and the lower and upper bounds of the 95% confidence intervals for 2017, 2018 and 2019, for 24-
hour accumulation for day 3 precipitation, excluding dry days. 
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Day 6  2017    2018    2019    
Neigh
bourh
ood 
size at 
which 
specif
ied 
the 
specif
ied 
bound
s 
cross 
the 
FSSufc  

upper 
95 % 
CI 
bound  

mean 
curve  

lower 
95 % 
CI 
bound  

upper 
95 % 
CI 
bound  

mean 
curve  

lower 
95 % 
CI 
bound  

upper 
95 % 
CI 
bound  

mean 
curve  

lower 
95 % 
CI 
bound  

Apr  17 
(187) 

-  -  43 
(473)  

73 
(803)  

-  -  -  -  

May  69 
(759) 

127 
(1397)  

-  -  -  -  29  
(319)  

61  
(671)  

-  

Jun  75 
(825) 

-  -  125 
(1375)  

-  -  79 
(869) 

117 
(1287)  

-  

Jul  71  
(781)  

-  -  21  
(231)  

47  
(517)  

109  
(1199)  

21  
(231)  

47 
(517)  

107 
(1177)  

Aug  39  
(429)  

57  
(627)  

99 
(1089)  

17  
(187)  

29  
(319)  

51  
(561)  

39  
(429)  

59  
(649)  

87  
(957)  

Sep  51  
(561)  

-  -  81 
(891)  

-  -   - -  -  

Oct  -  -  -  19 
(209)  

45 
(495)  

-   -  - -  

Nov  23 
(253) 

77 
(847)  

-  27 
(297)  

-  -   -  - - 

Table 10: The useful Fractional Skill Score neighbourhood size in grid cells (km in brackets) for the mean 
curve, and the lower and upper bounds of the 95 % confidence intervals for 2017, 2018 and 2019, for 24-
hour accumulation for day 6 precipitation, excluding dry days. 
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Annex 9: Epidemiological statistical model 
 

The WRA issued by the Met Office since April 2018 are used to anticipate locations where high 
daily precipitation accummulations may lead to increases in cholera levels, thus warranting 
targeted intervention. The objective of this epidemiological analysis is to answer two questions: 

1. Are the forecast models in the WRA good predictors of the cholera risk in 2017? In 2017, 
the WRA were not provided to UNICEF and thus this provides a baseline for this analysis. 

2. Were the actions taken based on the WRA effective at reducing cholera risk in 2018 and 
2019? 

To answer these questions, it is necessary to characterise the increases in cholera levels that 
warrant intervention. Thresholds in the WRA used to trigger action were: 20 mm/day for the CAM, 
and 10 mm/day for the GM (Section 6.1). Due to the lack of contextual information, it is not known 
at what cholera count or epidemiological threshold warrants action, independently of the WRA. It 
is therefore necessary to link the forecast precipitation to the cholera data available for 2017 to 
infer an epidemiological threshold that warrants a WASH intervention. 

The derivation of the epidemiological threshold that warrants a WASH intervention is the objective 
of the first part of this analysis. To derive the epidemiological threshold, a mathematical formulation 
is proposed that models the relationship between the weekly number of new cholera cases and 
the precipitation forecasts. This mathematical model can then be used to calculate the expected 
number of weekly cholera counts for a given precipitation amount. These expected counts are 
compared to the actual values and the accuracy of the model is assessed using RMSE and bias 
statistics. The mathematical model is derived from cholera counts and precipitation forecasts using 
data from 2017. 

The results from this analysis help provide an answer to question 1 above. To answer question 2, 
the mathematical model derived from 2017 is again used but with precipitation forecasts from 2018 
and 2019. RMSE and biases are calculated for the 2018 and 2019 data and compared to the 2017 
RMSE and biases. 

In Yemen the precipitation forecasts are issued as an indicator of the risk of rising numbers of 
cholera cases. In 2017, prior to the WRA being issued, the number of cholera cases are assumed 
not to be affected by targeted WASH interventions, i.e. WASH interventions prior to 2018 will have 
been reactionary and based on epidemiological counts only. In 2018, it is assumed that the number 
of cholera cases will be reduced with the targeted WASH interventions due to the provision of the 
WRA allowing for preventative action. 

The epidemiological data for 2017 is examined to determine whether the cholera and precipitation 
data are correlated. The investigation into whether there is a statistical link between the WRA and 
cholera data is limited to the day 1 forecasts, which is from the CAM. It is assumed that the 
statistical relationship does not, within the confidence intervals of the fitted model, depend on the 
choice of model (CAM or GM) or which forecast day is used. 

To test whether the two datasets are correlated, the daily precipitation data are transformed into: 

 weekly mean precipitation (measured in mm per day), to provide a measure of total 
precipitation over the week, calculated from accumulated daily forecasts (7 model runs); 

 weekly maximum precipitation, i.e. the highest of the 7 daily precipitation values. This was 
investigated because the forecasts were used by examining the daily precipitation for the 
next 7 days and acting when any one of these 7 forecasts exceeded the threshold. 

Quantile-Quantile (Q-Q) plots (not shown, created using the Statistical Package for Social Sciences 
(SPSS) software package) are used to determine if the variables, cholera count, mean and max 
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precipitation, follow normal distributions. This was achieved by plotting the expected normal value 
against the observed value. If the data follow the diagonal (expected normal value equals observed 
value), then the variable follows a normal distribution. The Q-Q plots (not shown) show that neither 
cholera count nor precipitation are normally distributed and therefore the correlation between 
cholera count and precipitation is assessed using Spearman’s (rank order) correlation. An 
investigation into the lag between precipitation and cholera count is presented in later. 

  

Figure A9a: Scatter plots of cholera count against mean (left) and max (right) precipitation. 

In 2018 and 2019 preventive action was taken if the daily accumulated precipitation exceeded 20 
mm for the CAM. As the epidemic threshold used prior to the provision of the CAM data is not 
known, the epidemic threshold will be derived from the relationship between cholera cases and 
precipitation in 2017. This relationship should take into account that a threshold of 20 mm of daily 
accumulated precipitation was used as a limit over which the number of cholera cases were 
expected to be of epidemic concern, due to using the CAM to investigate the statistical link between 
precipitation and cholera. No set definition for what would constitute an epidemic threshold was 
available prior to this study. Therefore, a model is sought that estimates the number of new cholera 
cases for an epidemic threshold, given the chosen precipitation threshold. This is limited by only 
have 1 year’s epidemiological data to develop this model, ideally there would be at least 3 years of 
epidemiological data, but this was not available. With the wide scatter shown in the scatter plots 
(Figure A9a), the choice of model is only to (a) provide the means of estimating an epidemic 
threshold and (b) adjust for the non-normal distribution of precipitation. Furthermore, a model that 
transforms the precipitation into a linear risk index lying between 0 and 1 would be convenient. In 
consideration that: 

 the distribution of precipitation is highly skewed (of the log-normal type); 
 a threshold is used on daily precipitation to trigger action; 
 this threshold could be used to define significant epidemic levels in terms of a cholera count 

threshold; 
 both cholera count and precipitation variables have a natural lower bound at 0; 
 it would be useful to transform precipitation into a risk index between 0 and 1 to relate to 

the counts and to help set the cholera count threshold; 

the following non-linear model is proposed for estimating weekly cholera counts, �̂�: 

�̂� =
4𝐸

𝜋
tan

𝑝

𝑃
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𝑝 is the maximum daily precipitation in a week, 

𝑃 is the threshold of the maximum daily precipitation in a week (𝑃 = 20 mm has been used for the 
CAM), 

𝐸 is the estimated cholera epidemic threshold. 

The model presented here has the property that, if 𝑝 = 𝑃, the CAM precipitation threshold, then 
�̂� = 𝐸 the epidemic threshold. The cholera risk index 𝐶 can be defined as: 

𝐶 =
2

𝜋
tan

𝑝

𝑃
 

This means that the cholera count estimate �̂� = 2𝐸𝐶 is a linear function of the risk index 𝐶 with an 
epidemic threshold 𝐸 that can be determined by linear regression. Also, it can be noted that 0 ≤
𝐶 < 1. 

The parameter 𝐸 is estimated by nonlinear regression (using SPSS’s nonlinear regression 
module), with the constraint 𝐸 ≥ 0. A regression is carried out with the fixed precipitation threshold 
𝑃 = 20 mm to estimate the epidemic threshold 𝐸 for the 20 mm threshold that was used for the 
CAM. This is equivalent to a simple linear regression of cholera counts against the risk index 𝐶 
(with the constraint that 𝐸 ≥ 0).  

The performance of the precipitation forecasts with respect to their predicting cholera cases is 
assessed, through the nonlinear model, by computing for each year the root mean square error 
(RMSE) and the bias. The bias is derived from the weekly deviations of the predicted cholera 
counts (c=2EC, where C is the cholera index) from the observed cholera count (c),  c-c=2EC-c, 
averaged over the year. The RMSE is derived from taking the square root of the mean of the square 
of the weekly deviations. 

Both mean and max precipitation, shown in Figure A9b, are most strongly correlated with the 
cholera count with no lag, shown in Figure A9a, with coefficients of 0.51 for mean and 0.45 for max 
precipitation, although these are still considered weak correlations. The coefficients were found to 
be significant at the < 0.01 level (2-tailed test) with up to 3 weeks lag for mean precipitation and up 
to 1 week lag for max precipitation (from complementary analyses using SPSS). Furthermore, the 
gradual waning of correlation with increasing lag suggests strong temporal autocorrelation with a 
possible seasonal trend. 

  

Figure A9b: Weekly mean and maximum precipitation for Yemen in 2017. 

Due to using weekly country-level data, with only 53 data points over a single one-year period, it is 
not possible to examine seasonality, although it is known that there is a seasonality to the 
precipitation in Yemen. This limits the analysis, however, for this study the weekly data are 
assumed to be independent. This assumption could be addressed by having epidemiological data 
prior to 2017. Allowing for temporal and seasonal dependency could result in a higher correlation 
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coefficient but would most likely reduce the statistical significance of the result, result due to the 
decrease in the number of data points. Also, the WRA may have been used in conjunction with 
additional ‘local’ knowledge from the WASH teams, such as air temperature, population density, 
known areas of conflict (thus potential damage to sanitation infrastructure) and previous cholera 
intervention, which cannot be taken into account in this analysis. Therefore, the temporal 
dependency and seasonality are not examined here as they form a small part of the assumptions 
of the relationship between precipitation and cholera incidence. The epidemiological data was not 
analysed at a governorate level due to time constraints. 

Having established a statistically significant correlation between cholera counts and precipitation, 
with the strongest temporal correlation occurring between the precipitation in the same week as 
that of the new cholera cases, the relationship between counts and precipitation with no temporal 
lag is examined. 

  

Figure A9c: Spearman’s (rank order) correlation coefficients for country-level cholera counts against 
weekly mean and max precipitation with lags of 0 to 10 weeks. Coefficients are significant at the < 0.01 
level up to 3 weeks and 1week lag for mean and max precipitation, respectively (additional analysis using 
SPSS). 

By setting a precipitation threshold of P = 20 mm, the estimate for the epidemic threshold is 
E = 91 881 with bootstrap estimate of its 95 % trimmed range of [63 096;132 470]. The Pearson 
correlation coefficient is 0.39 (95 % Confidence Interval of 0.13 to 0.60) with a 0.004 significance 
level, obtained by examining the cholera counts against the computed cholera risk index C. The 
epidemic threshold of 91 881 is well above the highest cholera case count of ~ 50 000. This is 
consistent with the precipitation threshold of 20 mm that is in excess of the highest max 
precipitation value of ~ 10 mm. With such a precipitation threshold, for the whole country of Yemen 
at least, at no stage in 2017 did the weekly count of new cholera cases exceed the estimated 
epidemic threshold. Similar questions regarding the choice of the threshold are also relevant here, 
however the discussion presented earlier is also valid here. 
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Figure A9d: Scatter plots with regression lines with precipitation threshold P = 20 mm. Vertical line 
indicates the precipitation threshold P; horizontal line indicates the epidemic threshold E. 

Following the cholera epidemic in 2017 the number of weekly new cholera cases rose in the second 
half of 2018 to 15 000 cases, peaked again in March/April 2019 at over 30 000 cases and remained 
high with two secondary peaks at two-month intervals. The precipitation-based cholera risk index 
was computed for each week by taking the maximum risk index value from the individual forecast 
day risk values and using the forecast model dependent 20 mm and 10 mm thresholds. The 
threshold is represented by the risk index line C = 0.5 and the cholera risk index only exceeds this 
on two occasions in 2018, consistent with the previous observation that precipitation averaged over 
the whole of Yemen rarely reaches the threshold values used. 

For 2017, the year before the forecasts were being used to help manage the epidemic in Yemen, 
the RMSE is relatively high at 20 000, shown in Figure A9e, and the regression has a Pearson 
correlation coefficients of 0.39 previously calculated from the nonlinear regression.  
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Figure A9e: RMSE in cholera count using fixed precipitation thresholds for 2017 to 2019. 

  

Figure A9f: Bias in cholera count using fixed precipitation thresholds for 2017 to 2019. 

For 2017, the negative bias, shown in Figure A9f, means that new cholera cases are 
underestimated by up to 10 000 (on average) when using fixed 20 mm and 10 mm precipitation 
thresholds. 

For 2018 and 2019, the results show a higher RMSE in 2018 with positive biases of up to 10 000. 
These results could be explained by a number of different factors that could either act 
independently or in combination: 

 the precipitation forecasts were used effectively to prevent increases in number of cholera 
cases; 

 an increase in the number of cholera cases was prevented due to factors other than the 
precipitation forecasts, e.g. through monitoring water supply microbiology; 

 there is significant scatter in the risk index to cholera count relationship and the results are 
due to a random effect, natural to this type of data; 

 the annual seasonality which has not been accounted for (only one year, 2017, before the 
forecasts was available). 

Having established a statistically significant spearman’s correlation between cholera counts and 
precipitation (< 0.01 level of significance), the strongest correlation was found when there is no lag 
between precipitation and cholera counts. Thus, the relationship between counts and precipitation 
is examined assuming there is no lag. A positive bias implies that there are more predicted cases 
from the fitted models than were actual realised. If the reason for this positive bias is solely down 
to effective disease prevention through targeted interventions due to the WRA then a positive bias 
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should be seen in 2018. Based on the RMSE results, the precipitation forecasts appear to be better 
at predicting cholera risk in 2019 (lowest RMSE) than in any other year. 

Annex 10: Alternative approach to modelling cholera counts 

The methodology and results described above come from just one approach to modelling the 
cholera counts. A different approach which draws upon statistical theory is to fit a generalized 
additive model (GAM). A GAM is an extension of the generalised linear model framework which is 
itself an extension of the linear model framework. A linear model assumes that the response 
variable, in this case cholera counts, is normally distributed and can be described by the sum of a 
set of linear predictor variables. However, typically, count data are not normally distributed. They 
either follow a Poisson distribution (where the mean is equal to the variance) or the negative 
binomial distribution. A generalised linear model assumes that the response data has a distribution 
which is a member of the exponential family (both Poisson and negative binomial distributions 
belong to the exponential family). The means of the response variable are then linked to a 
smoothed monotonic function of the predictor variables via a link function, (the default link function 
for the negative binomial distribution is and the Poisson distribution is the log function). 

Results from fitting a Poisson distribution to the count data suggest that for the cholera data the 
mean is not equal to the variance, and so a negative binomial distribution would be arguably better. 
Preliminary investigations with such a model, analysis not shown, suggested that the response 
variables are not temporally independent. A GAM allows the count data to be modelled by the sum 
of smoothed functions of the predictor variables, rather than by the smoothed monotonic functions 
of the linear predictors as for the generalised linear model. As a result the seasonality in the data, 
such as that shown in the time series plots, can be incorporated via a dependency on a temporal 
variable, such as the week of the year. Whilst this GAM gave a better correlation to the 2017 
cholera count, its predictions of the cholera count for 2018 were still poor. It is possible that this 
type of model could be improved upon, and one recommendation for further work would be to 
investigate the GAM approach further. 

 

Annex 11: Example of a decision support tool for using the CRM 
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Annex 12: Water sampling protocols 

University of Maryland (UMD) has previously developed and optimized an end-to-end protocol for 
sample collection, metagenomic sequencing, and bioinformatics. Accordingly, UMD will provide a 
training video and assist virtually with all aspects of sample collection and processing. At each 
sampling event, 1 L grab samples will be collected from surface water using virgin wide mouth 
bottles. Water samples will be concentrated via syringe filtration by passing 250 mL of water 
through a 0.22 m pore size filter membrane, in triplicate, totalling three concentrations per 
sampling event. Each membrane will be placed in a separate 1 mL flip cap tube containing 
DNA/RNA ShieldTM Lysis Buffer—this method of pathogen inactivation is compliant with Center for 
Disease Control guidelines for inactivation of infectious agents, including viruses, bacteria, fungi, 
and parasites (CDC, 2020). Lysed samples will be stored free of direct light at ambient temperature 
for up to one month or at <-20 °C for long term storage. Following international shipping regulations 
for liquids, samples will be packaged and shipped to UMD at ambient temperature. UMD will isolate 
DNA from each filter membrane, prepare DNA libraries, and perform whole-metagenome 
sequencing coupled with cloud-based bioinformatics, using techniques proven in both clinical and 
environmental settings (Brumfield et al., 2020; Connelly et al., 2019; Hamner et al., 2019; Hourigan 
et al., 2018; Kalan et al., 2019; Lax et al., 2012; Ponnusamy et al., 2016; Roy et al., 2018; Stamps 
et al., 2018) to achieve microbial (bacterial, archaeal, viral, fungal, and protozoan) identification to 
species, subspecies, and/or strain level and quantification of relative abundance. Analogously, 
antibiotic resistance and virulence-associated genes present in each sample will be identified. UMD 
will also employ conventional, direct molecular detection techniques as described previously (Huq 
et al., 2012). 


