

Limitations of Lagrangian L1 point observations

Imaging: only very rough idea of CME shape, trajectory, speed & strength In situ: optimal knowledge of geo-effective parameters, but late...

→ Position off-Sun-Earth line is essential Early properties of Earth-directed CMEs, continuous tracking, multi-point and SEP measurements, & impact at Earth

Limitations of past and future off-Sun-Earth line missions

Limitations of STEREO:

- During solar minimum (low CME statistics)
- Drifted through L5: no continuous
 "Sun-Earth" vantage point

Limitations of Solar Orbiter and Solar Probe +:

- Solar Orbiter imagers off at aphelion
- No broader context orbits rarely in proper location for study of Sun-Earth connections

Solar Orbiter Solar Probe+ INSTANT

INSTANT provides:

- → <u>Novel</u> coronal/heliospheric imaging and *in situ* data, during solar maximum, at a key off-Sun-earth line vantage point
- Invaluable synergy with observations at Earth and inner heliosphere missions (Solar Orbiter, Solar Probe + and Bepi-Colombo)
- → Unprecedented space weather capabilities as bonus

INSTANT

Science objectives

- 1. What is the coronal magnetic field configuration before and during CME eruptions?
- 2. What controls CME acceleration and subsequent propagation in the inner heliosphere?
- 3. Where do CME-driven shocks form and how do their properties affect particle acceleration?
- 4. How do INSTANT observations at L5 increase our space weather prediction capabilities?

Requirements for objectives 1

→ What is the coronal magnetic field configuration before and during CME eruptions?

- Novel Lyman-a measurements to determine line-of-sight magnetic field through the <u>Hanle</u> effect
- Measurement in low corona (1.15 4 Rs) for reconstruction of magnetic field topology
- Off-Sun-Earth line location for early determination of magnetic structure of Earth-bound CME and comparison with *in situ* data in heliosphere

Requirements for objective 2

→ What controls CME acceleration and subsequent propagation in the inner heliosphere?

- High cadence white light imaging in low corona (1.15 4 Rs) for CME acceleration
- Wide angle heliospheric imagers to track CME/CIR interactions in heliosphere
- Polarization information for accurate trajectory
- Off-Sun-Earth line location for tracking of Earth-bound CMEs

Requirements for objective 3

→ Where do CME-driven shocks form and how do their properties affect particle acceleration?

- Early imaging of shock formation in low corona (up to 4 Rs)
- Magnetic field and density imaging for shock properties
- Multipoint, off-Sun-Earth line measurement of energetic particles

Mission profile: orbital requirements

- Observation off-Sun-Earth line is a key for innovative science of Earth-directed CMEs
- Towards L5 rather than L4 (CIRs and SEPs)
- Science operations start after commissioning (~few months)
- Earth-directed CMEs can be studied after S/C has drifted by ~ 20° towards L5
 - L5 insertion after ~2 years operation

Mission profile for the ESA-China S2 call

- Observation off-Sun-Earth line is a key for innovative science of Earth-directed CMEs
- Towards L5 rather than L4 (CIRs and SEPs)
- Science operations start after commissioning (~few months)
 - Earth-directed CMEs can be studied after S/C has drifted by ~ 20° towards L5
 - L5 insertion after ~2 years operation

3 years operation sufficient to address key science objectives

Best if synergy with Solar Orb., SP+ and Bepi-C ...

Mission profile for the ESA-China S2 call

Launcher that allows exit to L5
 Long-March 2 CTS with upper stage

Mission profile for the ESA-China S2 call

Launcher that allows exit to L5
 Long-March 2 CTS with upper stage

 Spacecraft mass max. 300 kg as per boundary conditions

Proba-type European platform

 Additional propulsion module for insertion at L5

Electric propulsion with required dV

Payload fields of view

Payload: innovative coronal imaging

MAGIC: MAGnetic Imaging Coronagraph

- Novel Lyman-α measurements to determine line-of-sight magnetic field component through the Hanle
- High cadence (5-7 min) measurement in low corona (1.15–4 Rs) for reconstruction of magnetic field topology
- White light for electron density estimates
- Off-Sun-Earth line for early determination of magnetic structure of Earth-bound CME and comparison with in situ data

Heritage: R&T, SOHO, Solar Orb., ground, ...

Payload: new 'polarized' heliospheric imagers

PHELIX: Heliospheric Imagers

- Wide angle (2.5 60°) white light imagers to track CME and CIR interactions in heliosphere
- Polarization measurements for accurate trajectory
- Off-Sun-Earth line for early determination of trajectory of Earth-bound CME and comparison with in situ data in heliosphere

Heritage: R&T, STEREO, SOHO

TRL9

Howard et al. [2013]

Payload: in situ instruments

- In situ, off-Sun-Earth line (towards L5) measurement of B-field and thermal protons for CMEs and corotating structures
- 1 AU (towards L5) measurement of energetic particles for direct detection and study of SEPs

MAG: Flux-gate Magnetometer

PAS: Proton and Alpha Sensor

HEPS: High energy Particle Sensors (e-/p+ and heavies in 10s keV – 10s MeV)

Heritage: Cluster, Chang'E, Solar Orb...

TRLs 9

Payload budgets

All instruments have TRL >~ 6

Mass	Power	Dimensions	Talamastmi	TDI	
1. 1		Difficilisions	Telemetry	TRL	Heritage
(kg)	(w)	(cm)	(kbps)		
			DI 1/2 OF 1/44 A		
25	23	75 X 55 X 20	Phase 1/2: 95.4/11.4	6	Ground prototype
			Beacon: 0.6		and testing
20	20.2	84 x 56 x 22	Phase 1/2: 26/4	> 6	STEREO
		(25 x 15 x 6)	Beacon: 0.33		
3.5	6.5	14 x 11 x 15	Phase 1/2: 2/1	> 6	Chang'E-1/2
		(16 x 16 x 8)	Beacon: 0.04		
3	4	11 x 6 x 5	Phase 1/2: 2/1	> 6	FengYun-4
		(24 x 18 x 5)	Beacon: 0.005		China-Russia YH-1
2.5	5.5	13 x 17 x 14	Phase 1/2: 2/1	> 6	Solar Orbiter
			Beacon: 0.01		
4	5.5	22 x 15 x 10	0.5	6	Shenzhou Shuangxing
58	64.7	-	127.9 / 18.9	-	-
			Beacon: 1		
	25 20 3.5 3 2.5 4	25 23 20 20.2 3.5 6.5 3 4 2.5 5.5 4 5.5	25 23 75 x 55 x 20 20 20.2 84 x 56 x 22 (25 x 15 x 6) 3.5 6.5 14 x 11 x 15 (16 x 16 x 8) 3 4 11 x 6 x 5 (24 x 18 x 5) 2.5 5.5 13 x 17 x 14 4 5.5 22 x 15 x 10	25	25

S/C mass ≤ 300 kg, payload mass ≤ 60 kg and power ≤ 65 W

Payload telemetry

Two science phases related to location and telemetry:

- Phase #1: detailed solar and solar wind science
- Phase #2: Sun-earth connection and space weather science

Conclusions

Innovative concept that tackles compelling solar and heliospheric science objectives, and space weather as bonus, through:

- → unique measurements: Lyman-a and polarized HI
- → view from L5 for system-wide science
- → launch at Solar Maximum (2021)
- → synergy/timeliness with SolO and SP+
- → large, supportive communities in EU China (and US)

The mission proposed falls into S-class constraints

Although not selected in the ESA/China call, this concept ought to be revised and submitted in future small mission calls

Summary of ESA-China S2 mission key elements

We place ourselves within the boundary conditions:

- S-class mission with 50 M€ ESA + equivalent by China
- Additional contribution to payload by national agencies
- Spacecraft mass 300 kg + possibly propulsion module
- 60 kg/65 W for payload

The proposed approach to shared contribution is:

- Launch by China (Long March)
- Platform by ESA (Myriad Evol., Proba, SSTL, ...)
- Payload shared by ESA member states and China
- Ground segment shared by ESA and China

Timeline: 2015 2021 2023 2024

Selection Launch+Com. Insertion L5 End nominal Development Orbit drift mission

Context

- S2: ESA S-class mission opportunity with China
- S-class mission with 50 M€ ESA + equivalent China
- Launch and payload costs may be additional
- Spacecraft mass ~300 kg + possibly propulsion module
- 60 kg/65 W for payload
- Launch in 2021

Timeline:

- First workshop in Chengdu in February 2014
- Second workshop in Copenhagen in September 2014
- Call will be issued mid-January 2015
- Proposals likely due mid-March 2015.