

Helioseismology and Thoughts About a Magnetic and Doppler Imager Instrument

Jesper Schou

Max Planck Institute for Solar System Research schou@mps.mpg.de

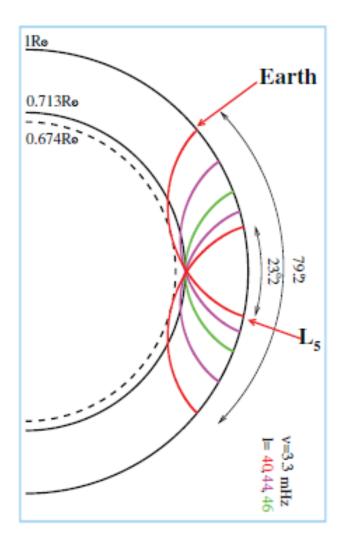
Overview

- A bit of helioseismology
- Requirements
 - Helioseismology
 - Instrument

Instrument Design

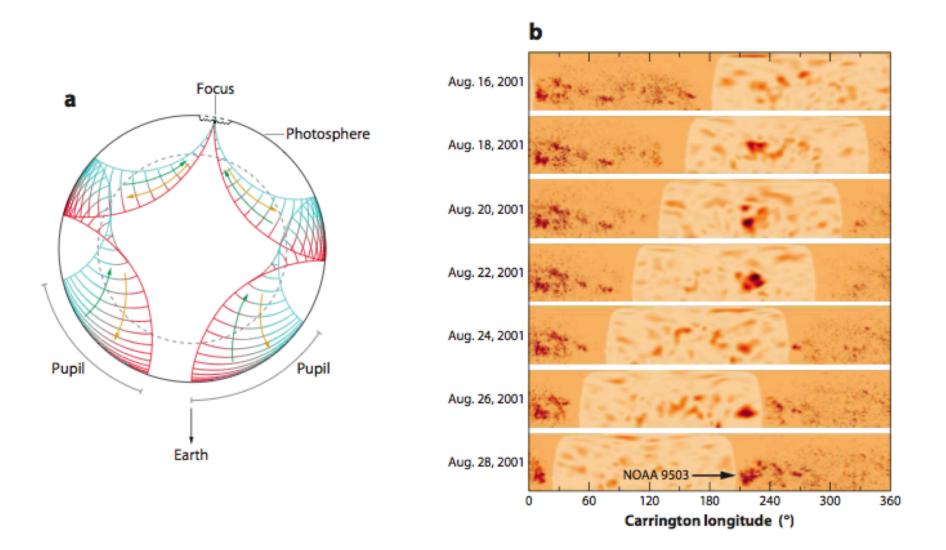
- General
- MDI/HMI
 - And a derived design
- PHI Separate presentation
- Conclusion

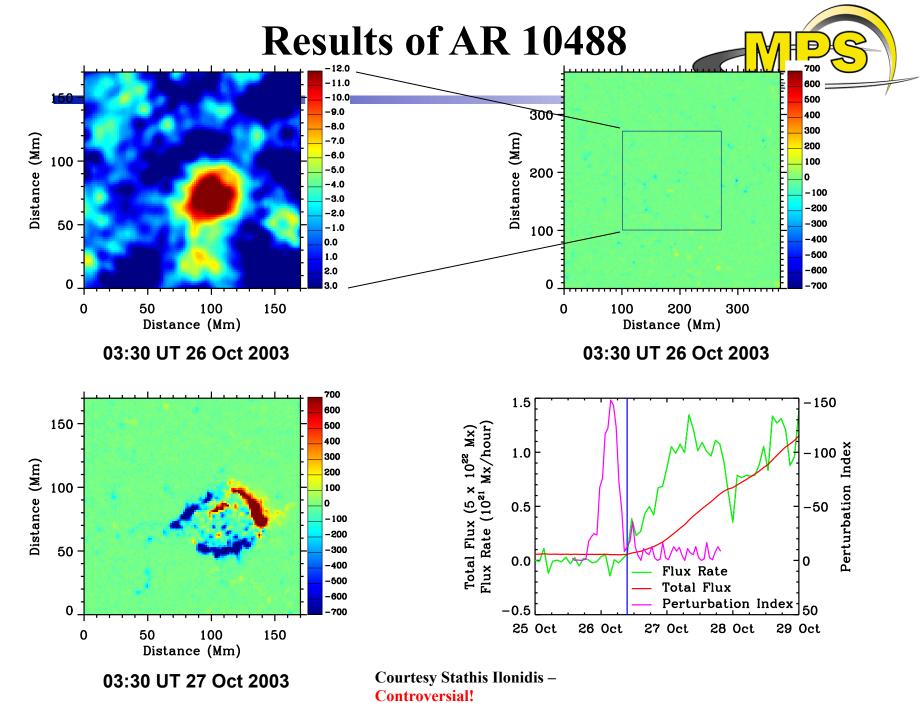
Helioseismology



- Study of the solar interior using (mostly) sound waves
- Waves are excited by near surface convection
- Reflected at surface
- Generally observed in surface Doppler shift
- Global mode analysis in terms of global resonant modes
 - Good for large scale structure and flows
- Local seismology using see next slides
- Able to determine sound and flow speeds very well
 - E.g. solar rotation
- Some sensitivity to density
- Magnetic effects in principle observable
 - But there are many complications

Helioseismology - Local




- Time-distance
 - Cross correlates signals at different points on the surface
 - Attempts to map interior in 3D
- Other methods
 - Ring diagrams, holography, etc.
- Great success in seeing activity on far side of the Sun
- Active regions detected before emergency
 - Controversial result
- Information on near surface
 - E.g. supergranulation

Farside Imaging

Helioseismic Science Objectives

- Near-Surface Rotation, Meridional Circulation, and Solar-Cycle Variations
- Deep and Large-Scale Solar Dynamics
- Deep Convection and Giant Cells
- Active Regions and Sunspots
- Physics of Oscillations
- Largely from Löptien et al., 2014 for Solar Orbiter
- L5 would improve on these
 - Better spatial coverage gives better statistics
 - Longer observations of each active region
 - Longer ray paths available for time-distance
 - Vector velocities
- Even larger improvements in combination with Solar Orbiter
 - Which unlike L5 has a variable geometry

Magnetic Fields

- Covered by others
 - Don't make the STEREO mistake!
- Surface field can be extrapolated to determine field higher in atmosphere
 - Vector field is better than LOS
 - It is difficult to extrapolate from high beta at photosphere to the chromosphere and above

• Vector field now done with HMI. However

- Transverse field is much noisier than LOS
- Transverse has 180 degree ambiguity. Partially resolved using various constraints
- Poor spatial coverage for field extrapolation of regions near limb and global fields

• L5 improves this situation

- Gets two field components over common area with Mlos only
 - Three components at times when combined with Solar Orbiter
- Generally resolve ambiguity over common area
- Increases spatial coverage of relevant regions

- Magnetograms at 1024x1024 pixels (within factor of 2)
- Full disk only. No need for high resolution
- Critically sampled images
- V, I and Mlos
- Possibly vector field (largely a telemetry issue)
- Doppler at 60s or better cadence
- Minimize telemetry requirements at fixed science => onboard processing
- Note that measuring Doppler and field is essentially the same from an instrumental point of view
- The BIG issue is telemetry!
 - We have made substantial progress on compression
 - Most other items are straightforward

- SOHO/MDI and SDO/HMI have operated for 15 and 5 years, essentially flawlessly
 - SDO/HMI not operational but has lots of redundancy
- Solar Orbiter/PHI is being built and has qualified all new technologies. 2018 launch

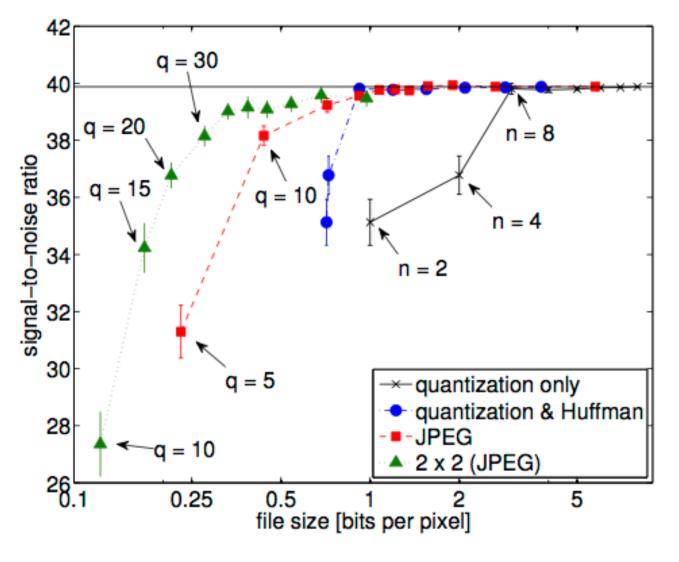
Imaging optics

Well understood

Polarization selection

- MDI and HMI use rotating waveplates
- PHI uses liquid crystals

Detectors


CCDs (MDI/HMI) vs. CMOS APS (PHI)

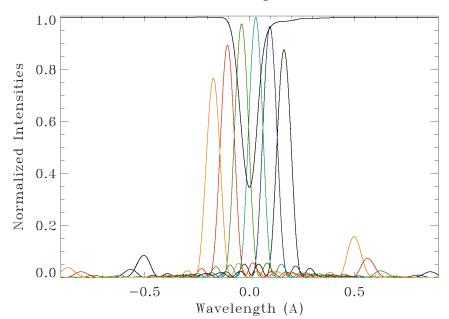
Onboard processing

- MDI did a lot
- HMI very little
- PHI will do a lot. Including use of reprogrammable FPGAs, inversions and compression

Compression

Löptien, et al., 2014, A&A 571, A42

Lyot/UBF/Michelsons


- Tune several elements to scan line
 Rotating waveplates stable MDI and HMI
 - •Electro-optical devices no moving parts

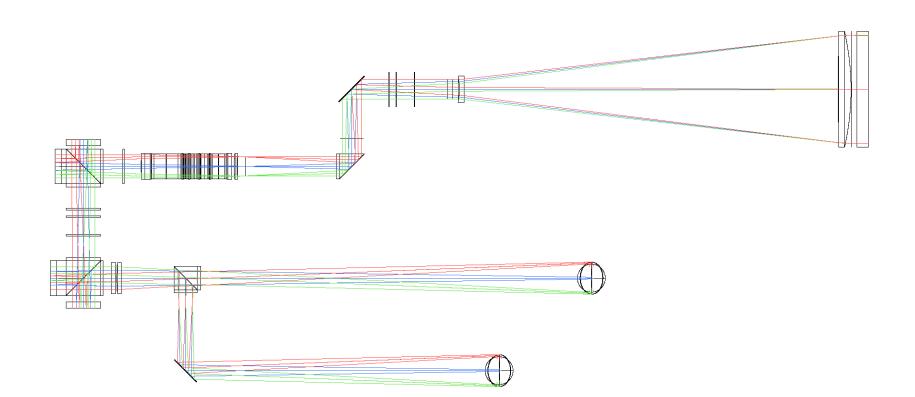
Fourier Tachometer

- Single Lyot or Micelson for tuning simple
- Fourier Tach and GONG

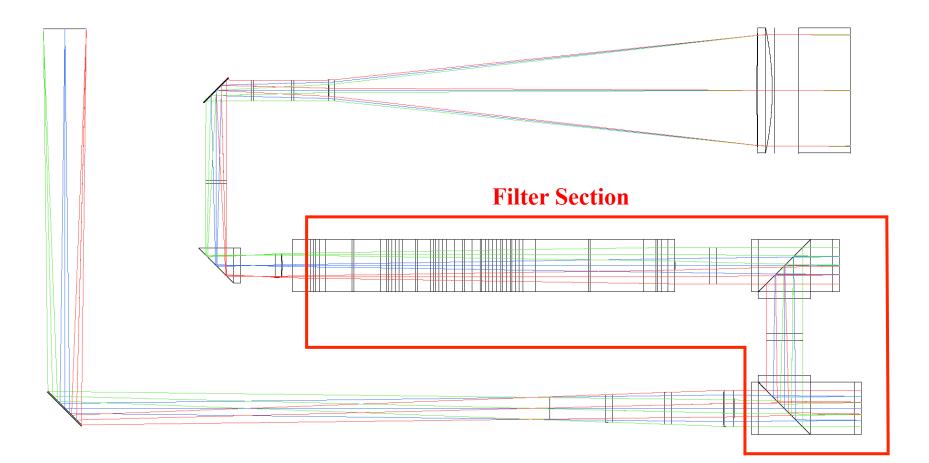
Fabry-Perot

- Use Fabry-Perot for tuning
 Typically electro-optical no moving parts
- -PHI has space qualified these
- MOF
 - Vapor (Na or K) in cell+magnetic field
 Simple, stable, poor dynamic range
 - Mt. Wilson
- The above all require various other windows and prefilters

HMI filter profiles


Possible Instrument Design

- Shrink HMI
- Simple proven design. HMI in turn based on MDI
 - High TRL. MDI and HMI have worked for years in similar environment
- Lower resolution (4" vs. 1") results in smaller aperture.
 - Lyot filter length does not reduce, so reduction limited
 - Resolution is main mass driver
- Fewer pixels (1024x1024 vs. 4096x4096)
 - Smaller image. Shorter effective focal length
 - Likely main power driver
- Data processing electronics needed
 - MDI did it. PHI will
- The developments for PHI will improve many of these substantially
 - How high a TRL do you want?
 - How many years of ops?



Size: 1050mm x 465mm

Size: 235mm x 117mm

PHI

• See separate presentation!

– Courtesy of Achim Gandorfer, Johann Hirzberger, and many others

• Much more complicated instrument than needed for L5

- Worse environment gets closer to the Sun
- Challenging data return
- Will go close to the Sun and significantly out of the ecliptic

Qualification of

- LiNbO₃ Fabry-Perot tuning
 - Including high voltage
- LCVRs for polarization selection
- CMOS APS sensors
- Reprogrammable FPGAs doing the needed processing
- Extensive work on onboard processing
- Extensive work on compression and effects on science
- Offers potential for significant reduction of resource use
- Being built launch in 2018

Conclusion

• You need a magnetograph!

Don't repeat the STEREO mistake!

• You should also have a Doppler images!

- But it is basically the same instrument

No technical issues

- MDI, HMI and PHI provide a lot of experience
- Experience exists in both the US and Europe

Low mass and power

– Substantial reduction possible using PHI technology

Data rate can be modest

- Has been investigated in detail for PHI
- Depends on science/ops objectives